期刊论文详细信息
BMC Genomics
Genome wide in silico analysis of Plasmodium falciparum phosphatome
Dinesh Gupta2  Pawan Malhotra1  Jamal Khalife3  Christine Pierrot3  Asif Mohmmed1  Rajan Pandey2 
[1] Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;Structural and Computational Biology group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;Center for Infection and Immunity of Lille, Inserm U1019, CNRS, Institut Pasteur de Lille, Univ Lille Nord de France, 1 rue du Professeur Calmette, Lille cedex 59019, France
关键词: Dephosphorylation;    Phosphatase;    Phosphatome;    CDD;    PFAM;    PTM;    Posttranslational modifications;   
Others  :  1090965
DOI  :  10.1186/1471-2164-15-1024
 received in 2014-06-02, accepted in 2014-11-12,  发布年份 2014
PDF
【 摘 要 】

Background

Eukaryotic cellular machineries are intricately regulated by several molecular mechanisms involving transcriptional control, post-translational control and post-translational modifications of proteins (PTMs). Reversible protein phosphorylation/dephosphorylation process, which involves kinases as well as phosphatases, represents an important regulatory mechanism for diverse pathways and systems in all organisms including human malaria parasite, Plasmodium falciparum. Earlier analysis on P. falciparum protein-phosphatome revealed presence of 34 phosphatases in Plasmodium genome. Recently, we re-analysed P. falciparum phosphatome aimed at identifying parasite specific phosphatases.

Results

Plasmodium database (PlasmoDB 9.2) search, combined with PFAM and CDD searches, revealed 67 candidate phosphatases in P. falciparum. While this number is far less than the number of phosphatases present in Homo sapiens, it is almost the same as in other Plasmodium species. These Plasmodium phosphatase proteins were classified into 13 super families based on NCBI CDD search. Analysis of proteins expression profiles of the 67 phosphatases revealed that 44 phosphatases are expressed in both schizont as well as gametocytes stages. Fourteen phosphatases are common in schizont, ring and trophozoite stages, four phosphatases are restricted to gametocytes, whereas another three restricted to schizont stage. The phylogenetic trees for each of the known phosphatase super families reveal a considerable phylogenetic closeness amongst apicomplexan organisms and a considerable phylogenetic distance with other eukaryotic model organisms included in the study. The GO assignments and predicted interaction partners of the parasite phosphatases indicate its important role in diverse cellular processes.

Conclusion

In the study presented here, we reviewed the P. falciparum phosphatome to show presence of 67 candidate phosphatases in P. falciparum genomes/proteomes. Intriguingly, amongst these phosphatases, we could identify six Plasmodium specific phosphatases and 33 putative phosphatases that do not have human orthologs, thereby suggesting that these phosphatases have the potential to be explored as novel antimalarial drug targets.

【 授权许可】

   
2014 Pandey et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128164624925.pdf 982KB PDF download
Figure 6. 155KB Image download
Figure 5. 69KB Image download
Figure 4. 33KB Image download
Figure 3. 26KB Image download
Figure 2. 113KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Nayyar GM, Breman JG, Newton PN, Herrington J: Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis 2012, 12(6):488-496.
  • [2]Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P: The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 2012, 11(11):5323-5337.
  • [3]Doerig C, Baker D, Billker O, Blackman MJ, Chitnis C, Dhar Kumar S, Heussler V, Holder AA, Kocken C, Krishna S, Langsley G, Lasonder E, Menard R, Meissner M, Pradel G, Ranford-Cartwright L, Sharma A, Sharma P, Tardieux T, Tatu U, Alano P: Signalling in malaria parasites. The MALSIG consortium. Parasite 2009, 16(3):169-182.
  • [4]Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC: Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 2012, 12(2):246-258.
  • [5]Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R: Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 2007, 4(3):231-237.
  • [6]Hanks SK: Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 2003, 4(5):111.
  • [7]Billker O, Lourido S, Sibley LD: Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 2009, 5(6):612-622.
  • [8]Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR, Hopp CS, Bright AT, Westenberger S, Winzeler E, Blackman MJ, Baker DA, Wandless TJ, Duraisingh MT: A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 2010, 328(5980):910-912.
  • [9]Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, Townsend RR, Qiu W, Hui R, Beatty WL, Sibley LD: Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 2010, 8(6):484-495.
  • [10]Leykauf K, Treeck M, Gilson PR, Nebl T, Braulke T, Cowman AF, Gilberger TW, Crabb BS: Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog 2010, 6(6):e1000941.
  • [11]Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD: Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010, 465(7296):359-362.
  • [12]Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, Janse CJ, Waters AP, Baker DA, Billker O: A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog 2009, 5(9):e1000599.
  • [13]Steinfeldt T, Konen-Waisman S, Tong L, Pawlowski N, Lamkemeyer T, Sibley LD, Hunn JP, Howard JC: Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 2011, 8(12):e1000576.
  • [14]Treeck M, Sanders JL, Elias JE, Boothroyd JC: The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe 2011, 10(4):410-419.
  • [15]Ward P, Equinet L, Packer J, Doerig C: Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 2004, 5:79.
  • [16]Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reininger L, Bottrill AR, Mistry S, Abdi A, Fennell C, Holland Z, Demarta C, Bouza Y, Sicard A, Nivez MP, Eschenlauer S, Lama T, Thomas DC, Sharma P, Agarwal S, Kern S, Pradel G, Graciotti M, Tobin AB, Doerig C: Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun 2011, 2:565.
  • [17]Talevich E, Tobin AB, Kannan N, Doerig C: An evolutionary perspective on the kinome of malaria parasites. Philos Trans R Soc Lond B Biol Sci 2012, 367(1602):2607-2618.
  • [18]Philip N, Vaikkinen HJ, Tetley L, Waters AP: A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLoS One 2012, 7(9):e44617.
  • [19]Fernandez-Pol S, Slouka Z, Bhattacharjee S, Fedotova Y, Freed S, An X, Holder AA, Campanella E, Low PS, Mohandas N, Haldar K: A bacterial phosphatase-like enzyme of the malaria parasite Plasmodium falciparum possesses tyrosine phosphatase activity and is implicated in the regulation of band 3 dynamics during parasite invasion. Eukaryot Cell 2013, 12(9):1179-1191.
  • [20]Patzewitz EM, Guttery DS, Poulin B, Ramakrishnan C, Ferguson DJ, Wall RJ, Brady D, Holder AA, Szoor B, Tewari R: An ancient protein phosphatase, SHLP1, is critical to microneme development in Plasmodium ookinetes and parasite transmission. Cell Rep 2013, 3(3):622-629.
  • [21]Andreeva AV, Kutuzov MA: PPP family of protein Ser/Thr phosphatases: two distinct branches? Mol Biol Evol 2001, 18(3):448-452.
  • [22]Wilkes JM, Doerig C: The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 2008, 9:412.
  • [23]Guttery DS, Poulin B, Ramaprasad A, Wall RJ, Ferguson DJ, Brady D, Patzewitz EM, Whipple S, Straschil U, Wright MH, Mohamed AM, Radhakrishnan A, Arold ST, Tate EW, Holder AA, Wickstead B, Pain A, Tewari R: Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 2014, 16(1):128-140.
  • [24]Wera S, Hemmings BA: Serine/threonine protein phosphatases. Biochem J 1995, 311(Pt 1):17-29.
  • [25]Cohen PT: Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 1997, 22(7):245-251.
  • [26]Hunter T: Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995, 80(2):225-236.
  • [27]Gallego M, Virshup DM: Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 2005, 17(2):197-202.
  • [28]Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H, Gupta D, Kissinger JC, Labo P, Li L, Mailman MD, Milgram AJ, Pearson DS, Roos DS, Schug J, Stoeckert CJ Jr, Whetzel P: PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 2003, 31(1):212-215.
  • [29]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2010, 39(Database issue):D225-D229.
  • [30]Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008, 36(Database issue):D281-D288.
  • [31]Liberti S, Sacco F, Calderone A, Perfetto L, Iannuccelli M, Panni S, Santonico E, Palma A, Nardozza AP, Castagnoli L, Cesareni G: HuPho: the human phosphatase portal. FEBS J 2013, 280(2):379-387.
  • [32]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2012, 41(Database issue):D808-D815.
  • [33]Date SV, Stoeckert CJ Jr: Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res 2006, 16(4):542-549.
  • [34]Kutuzov MA, Andreeva AV: Protein Ser/Thr phosphatases with kelch-like repeat domains. Cell Signal 2002, 14(9):745-750.
  • [35]Cohen PT, Philp A, Vazquez-Martin C: Protein phosphatase 4–from obscurity to vital functions. FEBS Lett 2005, 579(15):3278-3286.
  • [36]Andreeva AV, Kutuzov MA: Widespread presence of “bacterial-like” PPP phosphatases in eukaryotes. BMC Evol Biol 2004, 4:47.
  • [37]Blisnick T, Vincensini L, Fall G, Braun-Breton C: Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. Cell Microbiol 2006, 8(4):591-601.
  • [38]Daher W, Browaeys E, Pierrot C, Jouin H, Dive D, Meurice E, Dissous C, Capron M, Tomavo S, Doerig C, Cailliau K, Khalife J: Regulation of protein phosphatase type 1 and cell cycle progression by PfLRR1, a novel leucine-rich repeat protein of the human malaria parasite Plasmodium falciparum. Mol Microbiol 2006, 60(3):578-590.
  • [39]Freville A, Cailliau-Maggio K, Pierrot C, Tellier G, Kalamou H, Lafitte S, Martoriati A, Pierce RJ, Bodart JF, Khalife J: Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biol 2013, 11:80.
  • [40]Freville A, Landrieu I, Garcia-Gimeno MA, Vicogne J, Montbarbon M, Bertin B, Verger A, Kalamou H, Sanz P, Werkmeister E, Pierrot C, Khalife J: Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival. J Biol Chem 2011, 287(2):1306-1321.
  • [41]Bhattacharyya MK, Hong Z, Kongkasuriyachai D, Kumar N: Plasmodium falciparum protein phosphatase type 1 functionally complements a glc7 mutant in Saccharomyces cerevisiae. Int J Parasitol 2002, 32(6):739-747.
  • [42]Kumar R, Adams B, Oldenburg A, Musiyenko A, Barik S: Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite. Plasmodium falciparum: demonstration of its essential role using RNA interference. Malar J 2002, 1:5.
  • [43]Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ Jr, Treatman C, Wang H: PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 2009, 37(Database issue):D539-D543.
  • [44]Adams J, Kelso R, Cooley L: The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 2000, 10(1):17-24.
  • [45]Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J: Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 2004, 18(4):448-460.
  • [46]Waller RF, McFadden GI: The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 2005, 7(1):57-79.
  • [47]Guttery DS, Poulin B, Ferguson DJ, Szoor B, Wickstead B, Carroll PL, Ramakrishnan C, Brady D, Patzewitz EM, Straschil U, Solyakov L, Green JL, Sinden RE, Tobin AB, Holder AA, Tewari R: A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog 2012, 8(9):e1002948.
  • [48]Dobson S, May T, Berriman M, Del Vecchio C, Fairlamb AH, Chakrabarti D, Barik S: Characterization of protein Ser/Thr phosphatases of the malaria parasite, Plasmodium falciparum: inhibition of the parasitic calcineurin by cyclophilin-cyclosporin complex. Mol Biochem Parasitol 1999, 99(2):167-181.
  • [49]Vandomme A, Freville A, Cailliau K, Kalamou H, Bodart JF, Khalife J, Pierrot C: PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 2014, 15(2):2431-2453.
  • [50]Li JL, Baker DA: Protein phosphatase beta, a putative type-2A protein phosphatase from the human malaria parasite Plasmodium falciparum. Eur J Biochem 1997, 249(1):98-106.
  • [51]Rusnak F, Mertz P: Calcineurin: form and function. Physiol Rev 2000, 80(4):1483-1521.
  • [52]Singh S, More KR, Chitnis CE: Role of calcineurin and actin dynamics in regulated secretion of microneme proteins in Plasmodium falciparum merozoites during erythrocyte invasion. Cell Microbiol 2013, 16(1):50-63.
  • [53]Dobson S, Kar B, Kumar R, Adams B, Barik S: A novel tetratricopeptide repeat (TPR) containing PP5 serine/threonine protein phosphatase in the malaria parasite. Plasmodium falciparum. BMC Microbiol 2001, 1:31.
  • [54]Lindenthal C, Klinkert MQ: Identification and biochemical characterisation of a protein phosphatase 5 homologue from Plasmodium falciparum. Mol Biochem Parasitol 2002, 120(2):257-268.
  • [55]Andreeva AV, Kutuzov MA: RdgC/PP5-related phosphatases: novel components in signal transduction. Cell Signal 1999, 11(8):555-562.
  • [56]Dobson S, Bracchi V, Chakrabarti D, Barik S: Characterization of a novel serine/threonine protein phosphatase (PfPPJ) from the malaria parasite. Plasmodium falciparum. Mol Biochem Parasitol 2001, 115(1):29-39.
  • [57]Kumar R, Musiyenko A, Oldenburg A, Adams B, Barik S: Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite. Plasmodium falciparum: implications for proteomics. BMC Mol Biol 2004, 5:6.
  • [58]Bajsa J, Duke SO, Tekwani BL: Plasmodium falciparum serine/threonine phoshoprotein phosphatases (PPP): from housekeeper to the ‘holy grail’. Curr Drug Targets 2008, 9(11):997-1012.
  • [59]Andreeva AV, Kutuzov MA: Protozoan protein tyrosine phosphatases. Int J Parasitol 2008, 38(11):1279-1295.
  • [60]Kutuzov MA, Andreeva AV: Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 2008, 161(2):81-90.
  • [61]Kutuzov MA, Andreeva AV: Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life. Funct Integr Genomics 2011, 12(1):11-23.
  • [62]Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, Engelberg K, Cheemadan S, Spielmann T, Preiser PR, Gilberger TW, Bozdech Z: Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol 2009, 28(1):91-98.
  • [63]Sun P, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P: Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci U S A 2008, 105(43):16590-16595.
  • [64]Bosch J, Paige MH, Vaidya AB, Bergman LW, Hol WG: Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J Struct Biol 2012, 178(1):61-73.
  • [65]Muller IB, Knockel J, Eschbach ML, Bergmann B, Walter RD, Wrenger C: Secretion of an acid phosphatase provides a possible mechanism to acquire host nutrients by Plasmodium falciparum. Cell Microbiol 2010, 12(5):677-691.
  • [66]Yeoman JA, Hanssen E, Maier AG, Klonis N, Maco B, Baum J, Turnbull L, Whitchurch CB, Dixon MW, Tilley L: Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum. Eukaryot Cell 2011, 10(4):556-564.
  • [67]Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS: Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 2004, 165(1):123-133.
  • [68]Seaman MN: Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 2004, 165(1):111-122.
  • [69]Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ: Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat Struct Mol Biol 2005, 12(7):594-602.
  • [70]Damen E, Krieger E, Nielsen JE, Eygensteyn J, van Leeuwen JE: The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem J 2006, 398(3):399-409.
  • [71]Wang D, Guo M, Liang Z, Fan J, Zhu Z, Zang J, Li X, Teng M, Niu L, Dong Y, Liu P: Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J Biol Chem 2005, 280(24):22962-22967.
  • [72]Chapman KB, Boeke JD: Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 1991, 65(3):483-492.
  • [73]Nam K, Lee G, Trambley J, Devine SE, Boeke JD: Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol Cell Biol 1997, 17(2):809-818.
  • [74]Kim JW, Kim HC, Kim GM, Yang JM, Boeke JD, Nam K: Human RNA lariat debranching enzyme cDNA complements the phenotypes of Saccharomyces cerevisiae dbr1 and Schizosaccharomyces pombe dbr1 mutants. Nucleic Acids Res 2000, 28(18):3666-3673.
  • [75]Khalid MF, Damha MJ, Shuman S, Schwer B: Structure-function analysis of yeast RNA debranching enzyme (Dbr1), a manganese-dependent phosphodiesterase. Nucleic Acids Res 2005, 33(19):6349-6360.
  • [76]Eder S, Shi L, Jensen K, Yamane K, Hulett FM: A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 1996, 142(Pt 8):2041-2047.
  • [77]Pop O, Martin U, Abel C, Muller JP: The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J Biol Chem 2002, 277(5):3268-3273.
  • [78]D’Amours D, Jackson SP: The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002, 3(5):317-327.
  • [79]Borde V: The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res 2007, 15(5):551-563.
  • [80]Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T: Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 1998, 95(5):705-716.
  • [81]Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P: Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J Biol Chem 2003, 278(49):48957-48964.
  • [82]Paull TT, Gellert M: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1998, 1(7):969-979.
  • [83]Das AK, Helps NR, Cohen PT, Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 1996, 15(24):6798-6809.
  • [84]Schweighofer A, Hirt H, Meskiene I: Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 2004, 9(5):236-243.
  • [85]Barford D, Das AK, Egloff MP: The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 1998, 27:133-164.
  • [86]Mamoun CB, Sullivan DJ Jr, Banerjee R, Goldberg DE: Identification and characterization of an unusual double serine/threonine protein phosphatase 2C in the malaria parasite Plasmodium falciparum. J Biol Chem 1998, 273(18):11241-11247.
  • [87]Mamoun CB, Goldberg DE: Plasmodium protein phosphatase 2C dephosphorylates translation elongation factor 1beta and inhibits its PKC-mediated nucleotide exchange activity in vitro. Mol Microbiol 2001, 39(4):973-981.
  • [88]Raugei G, Ramponi G, Chiarugi P: Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 2002, 59(6):941-949.
  • [89]Boutros R, Dozier C, Ducommun B: The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006, 18(2):185-191.
  • [90]Owens DM, Keyse SM: Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007, 26(22):3203-3213.
  • [91]Trinkle-Mulcahy L, Lamond AI: Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 2006, 18(6):623-631.
  • [92]Fauman EB, Saper MA: Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 1996, 21(11):413-417.
  • [93]Roma-Mateo C, Rios P, Tabernero L, Attwood TK, Pulido R: A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol 2007, 374(4):899-909.
  • [94]Kumar R, Musiyenko A, Cioffi E, Oldenburg A, Adams B, Bitko V, Krishna SS, Barik S: A zinc-binding dual-specificity YVH1 phosphatase in the malaria parasite, Plasmodium falciparum, and its interaction with the nuclear protein, pescadillo. Mol Biochem Parasitol 2004, 133(2):297-310.
  • [95]Pendyala PR, Ayong L, Eatrides J, Schreiber M, Pham C, Chakrabarti R, Fidock DA, Allen CM, Chakrabarti D: Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparum. Mol Biochem Parasitol 2008, 158(1):1-10.
  • [96]Stephens BJ, Han H, Gokhale V, Von Hoff DD: PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 2005, 4(11):1653-1661.
  • [97]Singh M, Mukherjee P, Narayanasamy K, Arora R, Sen SD, Gupta S, Natarajan K, Malhotra P: Proteome analysis of Plasmodium falciparum extracellular secretory antigens at asexual blood stages reveals a cohort of proteins with possible roles in immune modulation and signaling. Mol Cell Proteomics 2009, 8(9):2102-2118.
  • [98]Rigden DJ: The histidine phosphatase superfamily: structure and function. Biochem J 2008, 409(2):333-348.
  • [99]Hills T, Srivastava A, Ayi K, Wernimont AK, Kain K, Waters AP, Hui R, Pizarro JC: Characterization of a new phosphatase from Plasmodium. Mol Biochem Parasitol 2011, 179(2):69-79.
  • [100]Koonin EV, Tatusov RL: Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol 1994, 244(1):125-132.
  • [101]Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L: Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 2006, 361(5):1003-1034.
  • [102]Yu X, Chini CC, He M, Mer G, Chen J: The BRCT domain is a phospho-protein binding domain. Science 2003, 302(5645):639-642.
  • [103]Yeo M, Lin PS, Dahmus ME, Gill GN: A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 2003, 278(28):26078-26085.
  • [104]Hausmann S, Shuman S: Defining the active site of Schizosaccharomyces pombe C-terminal domain phosphatase Fcp1. J Biol Chem 2003, 278(16):13627-13632.
  • [105]Siribal S, Weinfeld M, Karimi-Busheri F, Mark Glover JN, Bernstein NK, Aceytuno D, Chavalitshewinkoon-Petmitr P: Molecular characterization of Plasmodium falciparum putative polynucleotide kinase/phosphatase. Mol Biochem Parasitol 2011, 180(1):1-7.
  • [106]Stukey J, Carman GM: Identification of a novel phosphatase sequence motif. Protein Sci 1997, 6(2):469-472.
  • [107]Rudolph J: Cdc25 phosphatases: structure, specificity, and mechanism. Biochemistry 2007, 46(12):3595-3604.
  • [108]Campbell CO, Santiago DN, Guida WC, Manetsch R, Adams JH: In silico characterization of an atypical MAPK phosphatase of Plasmodium falciparum as a suitable target for drug discovery. Chem Biol Drug Des 2014, 84(2):158-168.
  • [109]Balu B, Campbell C, Sedillo J, Maher S, Singh N, Thomas P, Zhang M, Pance A, Otto TD, Rayner JC, Adams JH: Atypical mitogen-activated protein kinase phosphatase implicated in regulating transition from pre-S-Phase asexual intraerythrocytic development of Plasmodium falciparum. Eukaryot Cell 2013, 12(9):1171-1178.
  • [110]Uwanogho DA, Hardcastle Z, Balogh P, Mirza G, Thornburg KL, Ragoussis J, Sharpe PT: Molecular cloning, chromosomal mapping, and developmental expression of a novel protein tyrosine phosphatase-like gene. Genomics 1999, 62(3):406-416.
  • [111]Li D, Gonzalez O, Bachinski LL, Roberts R: Human protein tyrosine phosphatase-like gene: expression profile, genomic structure, and mutation analysis in families with ARVD. Gene 2000, 256(1–2):237-243.
  • [112]Pele M, Tiret L, Kessler JL, Blot S, Panthier JJ: SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet 2005, 14(11):1417-1427.
  • [113]Bellec Y, Harrar Y, Butaeye C, Darnet S, Bellini C, Faure JD: Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Plant J 2002, 32(5):713-722.
  • [114]Lu F, Jiang H, Ding J, Mu J, Valenzuela JG, Ribeiro JM, Su XZ: cDNA sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome. BMC Genomics 2007, 8:255.
  • [115]Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI: Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 2003, 299(5607):705-708.
  • [116]Claros MG, Vincens P: Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996, 241(3):779-786.
  • [117]Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G: Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 2003, 132(2):59-66.
  • [118]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [119]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [120]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [121]Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res 1997, 4(2):91-113.
  • [122]Gokhale NA, Zaremba A, Shears SB: Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J 2011, 434(3):415-426.
  • [123]Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer ET, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Srinivasamoorthy G, Stoeckert CJ Jr, Thibodeau R, Treatman C, Wang H: EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res 2009, 38(Database issue):D415-D419.
  文献评价指标  
  下载次数:55次 浏览次数:44次