期刊论文详细信息
BMC Genomics
Adaptation to environmental factors shapes the organization of regulatory regions in microbial communities
David Torrents2  Mercè Planas-Fèlix1  Josep M Mercader1  Leyden Fernandez1 
[1]Joint IRB-BSC program on Computational Biology. BSC, Jordi Girona, 29, 08034 Barcelona, Spain
[2]Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg Luís Companys 23, Barcelona 08010, USA
关键词: Metagenomes;    Gene regulation;    Environment;    Adaptation;   
Others  :  1128482
DOI  :  10.1186/1471-2164-15-877
 received in 2014-02-04, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

It has been shown in a number of metagenomic studies that the addition and removal of specific genes have allowed microbiomes to adapt to specific environmental conditions by losing and gaining specific functions. But it is not known whether and how the regulation of gene expression also contributes to adaptation.

Results

We have here characterized and analyzed the metaregulome of three different environments, as well as their impact in the adaptation to particular variable physico-chemical conditions. For this, we have developed a computational protocol to extract regulatory regions and their corresponding transcription factors binding sites directly from metagenomic reads and applied it to three well known environments: Acid Mine, Whale Fall, and Waseca Farm. Taking the density of regulatory sites in promoters as a measure of the potential and complexity of gene regulation, we found it to be quantitatively the same in all three environments, despite their different physico-chemical conditions and species composition. However, we found that each environment distributes their regulatory potential differently across their functional space. Among the functions with highest regulatory potential in each niche, we found significant enrichment of processes related to sensing and buffering external variable factors specific to each environment, like for example, the availability of co-factors in deep sea, of oligosaccharides in soil and the regulation of pH in the acid mine.

Conclusions

These results highlight the potential impact of gene regulation in the adaptation of bacteria to the different habitats through the distribution of their regulatory potential among specific functions, and point to critical environmental factors that challenge the growth of any microbial community.

【 授权许可】

   
2014 Fernandez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150224010256140.pdf 1559KB PDF download
Figure 4. 67KB Image download
Figure 3. 36KB Image download
Figure 2. 34KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM: Comparative metagenomics of microbial communities. Science 2005, 308:554-557.
  • [2]Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, Yamada T, Paccanaro A, Jensen LJ, Snyder M, Bork P, Gerstein MB: Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci U S A 2009, 106:1374-1379.
  • [3]Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT: Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 2005, 71:4121-4126.
  • [4]Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA: Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 2009, 11:1358-1375.
  • [5]Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA: Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J 2011, 5:461-472.
  • [6]Farre D, Bellora N, Mularoni L, Messeguer X, Alba MM: Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol 2007, 8:R140. BioMed Central Full Text
  • [7]Lin Z, Wu WS, Liang H, Woo Y, Li WH: The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics 2010, 11:581. BioMed Central Full Text
  • [8]Merino E, Jensen RA, Yanofsky C: Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol 2008, 11:78-86.
  • [9]Li H, Rhodius V, Gross C, Siggia ED: Identification of the binding sites of regulatory proteins in bacterial genomes. Proc Natl Acad Sci U S A 2002, 99:11772-11777.
  • [10]McCue L, Thompson W, Carmack C, Ryan MP, Liu JS, Derbyshire V, Lawrence CE: Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res 2001, 29:774-782.
  • [11]Huffman JL, Brennan RG: Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 2002, 12:98-106.
  • [12]Rodionov DA: Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 2007, 107:3467-3497.
  • [13]Gelfand MS, Koonin EV, Mironov AA: Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Res 2000, 28:695-705.
  • [14]Laing E, Sidhu K, Hubbard SJ: Predicted transcription factor binding sites as predictors of operons in Escherichia coli and Streptomyces coelicolor. BMC Genomics 2008, 9:79. BioMed Central Full Text
  • [15]Iqbal M, Mast Y, Amin R, Hodgson DA, Consortium S, Wohlleben W, Burroughs NJ: Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor. Nucleic Acids Res 2012, 40:5227-5239.
  • [16]Li L: GADEM: a genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery. J Comput Biol 2009, 16:317-329.
  • [17]Liu J, Xu X, Stormo GD: The cis-regulatory map of Shewanella genomes. Nucleic Acids Res 2008, 36:5376-5390.
  • [18]Sun J, Tuncay K, Haidar AA, Ensman L, Stanley F, Trelinski M, Ortoleva P: Transcriptional regulatory network discovery via multiple method integration: application to e. coli K12. Algorithms Mol Biol 2007, 2:2. BioMed Central Full Text
  • [19]Leuze MR, Karpinets TV, Syed MH, Beliaev AS, Uberbacher EC: Binding Motifs in Bacterial Gene Promoters Modulate Transcriptional Effects of Global Regulators CRP and ArcA. Gene Regul Syst Bio 2012, 6:93-107.
  • [20]Zhang S, Li S, Niu M, Pham PT, Su Z: MotifClick: prediction of cis-regulatory binding sites via merging cliques. BMC Bioinformatics 2011, 12:238. BioMed Central Full Text
  • [21]Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA: RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 2010, 38:D111-118.
  • [22]Grissa I, Vergnaud G, Pourcel C: The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007, 8:172. BioMed Central Full Text
  • [23]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35:W52-57.
  • [24]Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33:5691-5702.
  • [25]Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. Genome Res 2007, 17:377-386.
  • [26]Chin CS, Chuang JH, Li H: Genome-wide regulatory complexity in yeast promoters: separation of functionally conserved and neutral sequence. Genome Res 2005, 15:205-213.
  • [27]Abele D, Puntarulo S: Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 2004, 138:405-415.
  • [28]Storz G, Imlay JA: Oxidative stress. Curr Opin Microbiol 1999, 2:188-194.
  • [29]Edwards KJ, Gihring TM, Banfield JF: Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 1999, 65:3627-3632.
  • [30]Albers S-V, Koning SM, Konings WN, Driessen AJM: Insights into ABC Transport in Archaea. J Bioenerg Biomembr 2004, 36:5-15.
  • [31]Kempf B, Bremer E: Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 1998, 170:319-330.
  • [32]Osorio H, Martinez V, Nieto PA, Holmes DS, Quatrini R: Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 2008, 8:203. BioMed Central Full Text
  • [33]Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF: Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage. Science 1998, 279:1519-1522.
  • [34]Guazzaroni ME, Morgante V, Mirete S, Gonzalez-Pastor JE: Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Environ Microbiol 2013, 15:1088-1102.
  • [35]Sun S, Chen J, Li W, Altintas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M, Grethe J, Wooley J: Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Res 2011, 39:D546-551.
  • [36]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [37]Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ: Genome streamlining in a cosmopolitan oceanic bacterium. Science 2005, 309:1242-1245.
  • [38]Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A: Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 2013, 41:D226-D232.
  • [39]Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119. BioMed Central Full Text
  文献评价指标  
  下载次数:22次 浏览次数:11次