期刊论文详细信息
BMC Medicine
Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm
Alessandro Vespignani5  Vittoria Colizza2  Nicola Perra4  Bruno Gonçalves1  Duygu Balcan3  José J Ramasco6  Chiara Poletto7  Paolo Bajardi8  Michele Tizzoni3 
[1]Centre de Physique Théorique (CNRS UMR 6207), Marseille, France
[2]Institute for Scientific Interchange (ISI), Torino, Italy
[3]Computational Epidemiology Laboratory, Institute for Scientific Interchange (ISI), Torino, Italy
[4]Department of Health Sciences and College of Computer and Information Sciences, Northeastern University, Boston MA 02115 USA
[5]Institute for Quantitative Social Sciences at Harvard University, Cambridge MA, 02138 USA
[6]Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain
[7]INSERM, U707, Paris, France
[8]Department of Veterinary Sciences, University of Torino, Italy
关键词: validation.;    prediction;    H1N1 influenza pandemic;    computational epidemiology;   
Others  :  857253
DOI  :  10.1186/1741-7015-10-165
 received in 2012-04-12, accepted in 2012-12-13,  发布年份 2012
PDF
【 摘 要 】

Background

Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches.

Methods

We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability.

Results

Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model.

Conclusions

Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.

【 授权许可】

   
2012 Tizzoni et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723073236782.pdf 6437KB PDF download
35KB Image download
71KB Image download
46KB Image download
27KB Image download
28KB Image download
77KB Image download
52KB Image download
43KB Image download
63KB Image download
60KB Image download
56KB Image download
39KB Image download
24KB Image download
55KB Image download
28KB Image download
【 图 表 】

【 参考文献 】
  • [1]Riley S: Large-scale transmission models of infectious disease. Science 2007, 316:1298-1301.
  • [2]Balcan D, Hu H, Gonçalves B, Bajardi P, Poletto C, Ramasco JJ, Paolotti D, Perra N, Tizzoni M, Van den Broeck W, Colizza V, Vespignani A: Seasonal transmission potential and activity peaks of the new influenza A/H1N1: a Monte Carlo likelihood analysis based on human mobility. BMC Med 2009, 7:45. BioMed Central Full Text
  • [3]Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A: Multiscale mobility networks and the large scale spreading of infectious diseases. Proc Natl Acad Sci USA 2009, 106:21484-21489.
  • [4]Grais RF, Hugh Ellis J, Glass GE: Assessing the impact of airline travel on the geographic spread of pandemic influenza. Eur J Epidemiol 2003, 18:1065-1072.
  • [5]Colizza V, Barrat A, Barthélemy M, Valleron A-J, Vespignani A: Modeling the World-wide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 2007, 4:e13.
  • [6]Hufnagel L, Brockmann D, Geisel T: Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA 2004, 101:15124-15129.
  • [7]Eubank S, Guclu H, Kumar VSA, Marathe MV, Srinivasan A, Toroczkai Z, Wang N: Modeling disease outbreaks in realistic urban social networks. Nature 2004, 429:180-4.
  • [8]Merler S, Ajelli M: The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc R Soc B 2009, 277:557-565.
  • [9]Cooper BS, Pitman RJ, Edmunds WJ, Gay N: Delaying the international spread of pandemic influenza. PLoS Med 2006, 3:e12.
  • [10]Ferguson NM, Keeling MJ, Edmunds WJ, Gani R, Grenfell BT, Anderson RM, Leach S: Planning for smallpox outbreaks. Nature 2003, 425:681-685.
  • [11]Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005, 437:209-214.
  • [12]Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature 2006, 442:448-452.
  • [13]Germann TC, Kadau K, Longini IM Jr, Macken CA: Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci USA 2006, 103:5935-5940.
  • [14]Epstein J, Goedecke D, Yu F, Morris R, Wagener D, Bobashev G: Controlling pandemic flu: the value of international air travel restrictions. PLoS One 2007, 2:401.
  • [15]Ciofi degli Atti ML, Merler S, Rizzo C, Ajelli M, Massari M, Manfredi P, Furlanello C, Scalia-Tomba G, Iannelli M: Mitigation measures for pandemic influenza in italy: an individual based model considering different scenarios. PLoS One 2008, 3:e1790.
  • [16]Hejblum G, Setbon M, Temime L, Lesieur S, Valleron A-J: Modelers' perception of mathematical modeling in epidemiology: a web-based survey. PLoS One 2011, 6:e16531.
  • [17]Van Kerkhove MD, Asikainen T, Becker NG, Bjorge S, Desenclos JC, dos Santos T, Fraser C, Leung GM, Lipsitch M, Longini IM Jr, McBryde ES, Roth CE, Shay DK, Smith DJ, Wallinga J, White PJ, Ferguson NM, Riley S: Studies needed to address the public health challenges of the 2009 H1N1 influenza pandemic: insights from modeling. PLoS Med 2010, 7:e1000275.
  • [18]Nishiura N: Prediction of pandemic influenza. Eur J Epidemiol 2011, 26:583-584.
  • [19]Medlock J, Galvani A: Optimizing influenza vaccine distribution. Science 2009, 325:1705-1708.
  • [20]Hollingsworth TD, Ferguson NM, Anderson RM: Will travel restrictions control the International spread of pandemic influenza? Nature Med 2006, 12:497-499.
  • [21]Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D, Beckman R, Kadau K, Macken C, Burke DS, Cooley P: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci USA 2008, 105:4639-44.
  • [22]Flahault A, Vergu E, Coudeville L, Grais R: Strategies for containing a global influenza pandemic. Vaccine 2006, 24:6751-6755.
  • [23]Longini IM Jr, Halloran ME, Nizam A, Yang Y: Containing pandemic influenza with antiviral agents. Am J Epidemiol 2004, 159:623-633.
  • [24]Longini IM Jr, Nizam A, S X, Ungchusak K, Hanshaoworakul W, Cummings D, Halloran M: Containing pandemic influenza at the source. Science 2005, 309:1083-1087.
  • [25]Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP: Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology 2005, 16:791-801.
  • [26]Hall IM, Gani R, Hughes HE, Leach S: Real-time epidemic forecasting for pandemic influenza. Epidemiol Infect 2007, 135:372-385.
  • [27]Fraser C, Donnelly C, Cauchemez S, Hanage W, Van Kerkhove M, Hollingsworth T, Griffin J, Baggaley R, Jenkins H, Lyons E, Jombart T, Hinsley W, Grassly N, Balloux F, Ghani A, Ferguson NM: Pandemic potential of a strain of influenza A/H1N1: early findings. Science 2009, 324:1557-1561.
  • [28]Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, Potter G, Kenah E, Longini IM Jr: The transmissibility and control of pandemic influenza A/H1N1 virus. Science 2009, 326:729-733.
  • [29]Flahault A, Vergu E, Boelle P-Y: Potential for a global dynamic of Influenza A (H1N1). BMC Infect Dis 2009, 9:129. BioMed Central Full Text
  • [30]Boëlle PY, Bernillon P, Desenclos JC: A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009. Euro Surveill 2009, 14:19205.
  • [31]Lipsitch M, Lajous M, O'Hagan J, Cohen T, Miller J, Goldstein E, Danon L, Wallinga J, Riley S, Dowell S, Reed C, McCarron M: Use of cumulative incidence of novel influenza A/H1N1 in foreign travelers to estimate lower bounds on cumulative incidence in Mexico. PLoS One 2009, 4:e6895.
  • [32]White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, Pagano M: Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other Respi Viruses 2009, 3:267-276.
  • [33]Nishiura H, Castillo-Chavez C, Safan M, Chowell G: Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill 2009, 14:19227.
  • [34]Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski DM, Villaseñor I, Galván F, Cravioto P, Earn DJD, Dushoff J, Fisman D, Edmunds WJ, Hupert N, Scarpino SV, Trujillo J, Lutzow M, Morales J, Contreras A, Chávez C, Patrick DM, Brunham RC: Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respi Viruses 2009, 3:215-222.
  • [35]Boni MF, Manh BH, Thai PQ, Farrar J, Hien TT, Hien NT, Van Kinh N, Horby P: Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses. BMC Med 2009, 7:43. BioMed Central Full Text
  • [36]Nishiura H: Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009). Biomed Eng Online 2011, 10:15. BioMed Central Full Text
  • [37]Ong JBS, Chen MI-C, Cook AR, Lee HC, Lee VJ, Pin Lin RT, Tambyah PA, Gan Goh L: Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS One 2010, 5:e10036.
  • [38]Baguelin M, van Hoeck AJ, Jit M, Flasche S, White PJ, Edmunds WJ: Vaccination against pandemic influenza A/H1N1v in England: A real-time economic evaluation. Vaccine 2010, 28:2370-2384.
  • [39]Merler S, Ajelli M, Pugliese A, Ferguson NM: Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in europe: implications for real-time modelling. PLoS Comput Biol 2011, 7:e1002205.
  • [40]Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM Jr: The global transmission and control of influenza. PLoS One 2011, 6:e19515.
  • [41]Bobashev G, Morris RJ, Goedecke M: Sampling for global epidemic models and the topology of an international airport network. PLoS One 2008, 3:e3154.
  • [42]Ajelli M, Gonçalves B, Balcan D, Colizza V, Hu H, Ramasco JJ, Merler S, Vespignani A: Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect Dis 2010, 10:190. BioMed Central Full Text
  • [43]Rvachev LA, Longini IM Jr: A mathematical model for the global spread of influenza. Math Biosci 1985, 75:3-22.
  • [44]Viboud C, Bjornstad O, Smith D, Simonsen L, Miller M, Grenfell BT: Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 2006, 312:447-451.
  • [45]Flahault A, Valleron A-J: A Method for assessing the global spread of HIV-1 infection based on air travel. Math Popul Stud 1991, 3:1-11.
  • [46]Colizza V, Barrat A, Barthélemy M, Vespignani A: The role of airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA 2006, 103:2015-2020.
  • [47]Colizza V, Barrat A, Barthélemy M, Vespignani A: Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Med 2007, 5:34. BioMed Central Full Text
  • [48]Coburn BJ, Bradley G, Wagner BG, Blower S: Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med 2009, 7:30. BioMed Central Full Text
  • [49]Balcan D, Gonçalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A: Modeling the spatial spread of infectious diseases: The Global Epidemic and Mobility computational model. J Computl Sci 2010, 1:132-145.
  • [50]SocioEconomic Data and Application Center at Columbia University: Gridded population of the world (GPW). [http://sedac.ciesin.columbia.edu/gpw] webcite
  • [51]International Air Transport Association [http://www.iata.org] webcite
  • [52]Official Airline Guide [http://www.oag.com] webcite
  • [53]Keeling MJ, Rohani P: Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol Lett 2002, 5:20-29.
  • [54]Sattenspiel L, Dietz K: A structured epidemic model incorporating geographic mobility among regions. Math Biosci 1995, 128:71-91.
  • [55]Anderson RM, May RM: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press; 1992.
  • [56]Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron A-J: Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 2008, 167:775-785.
  • [57]Gani J, D Jerwood D: Markov chain methods in chain binomial epidemic models. Biometrics 1971, 27:591-603.
  • [58]Halloran ME, Longini IM Jr, Struchiner CJ: Binomial and stochastic transmission models. In. In Design and Analysis of Vaccine Studies, Statistics for Biology and Health. Springer, New York; 2010:63-84.
  • [59]GLEAMviz: The Global Epidemic and Mobility Model. [http://www.gleamviz.org/simulator/] webcite
  • [60]Van den Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V, Vespignani A: The GLEAMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect Dis 2011, 11:37. BioMed Central Full Text
  • [61]Basta NE, Halloran ME, Matrajt L, Longini IM: Estimating influenza vaccine efficacy from challenge and community-based study data. Am J Epidemiol 2008, 168:1343-1352.
  • [62]Flahault A, de Lamballerie X, Hanslik T, Salez N: Symptomatic infections less frequent with H1N1pdm than with seasonal strains. PLoS Curr Influenza 2009, 1:RRN1140.
  • [63]Bandaranayake D, Huang S, Bissielo A, Wood T: Seroprevalence of the 2009 A/H1N1 influenza pandemic in New Zealand. [http:/ / www.health.govt.nz/ publication/ seroprevalence-2009-influenza-h1n1- pandemic-new-zealand] webcite 2010.
  • [64]Secretaria de Salud, Mexico: Brote de infeccion respiratoria aguda en La Gloria, Municipio de Perote, Mexico, 2009. [http://portal.salud.gob.mx/contenidos/noticias/influenza/estadisticas.html] webcite
  • [65]Lipsitch M, Hayden FG, Cowling BJ, Leung GM: How to maintain surveillance for novel influenza A H1N1 when there are too many cases to count. Lancet 2009, 374:1209-1211.
  • [66]Colizza V, Vespignani A, Perra N, Poletto C, Goncalves B, Hu H, Balcan D, Paolotti D, Van den Broeck W, Tizzoni M, Bajardi P, Ramasco JJ: Estimate of novel influenza A/H1N1 cases in Mexico at the early stage of the pandemic with a spatially structured epidemic model. PLoS Curr Influenza 2009, 1:RRN1129. doi:10.1371/currents.RRN1129
  • [67]Indiana University Pervasive Technology Institute: High performance systems. [http://www.sct.gob.mx] webcite
  • [68]Bajardi P, Poletto C, Balcan D, Hu H, Gonçalves B, Ramasco JJ, Paolotti D, Perra N, Tizzoni M, Van den Broeck W, Colizza V, Vespignani A: Modeling vaccination campaigns and the Fall/Winter 2009 activity of the new A/H1N1 influenza in the Northern Hemisphere. EHT Journal 2009, 2:e11.
  • [69]Girard MP, Tam JS, Assossou OM, Kieny MP: The 2009 A (H1N1) influenza virus pandemic: A review. Vaccines 2010, 28:4895-4902.
  • [70]Ghani AC, Donnelly CA, Cox DR, Griffin JT, Fraser C, Lam TH, Ho LM, Chan WS, Anderson RM, Hedley AJ, Leung GM: Methods for estimating the case fatality ratio for a novel, emerging infectious disease. Am J Epidemiol 2005, 1162:479-86.
  • [71]Arinaminpathy N, McLean AR: Antiviral treatment for the control of pandemic influenza: some logistical constraints. J R Soc Interface 2008, 5:545-53.
  • [72]Wu JT, Riley S, Fraser C, Leung GM: Reducing the impact of the next influenza pandemic using household-based public health interventions. PLoS Med 2006, 3:e361.
  • [73]Jefferson T, Jones MA, Doshi P, Del Mar CB, Heneghan CJ, Hama R, Thompson MJ: Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst Rev 2012, 1:CD008965.
  • [74]Singer AC, Howard BM, Johnson AC, Knowles CJ, Jackman S, Accinelli C, Caracciolo AB, Bernard I, Bird S, Boucard T, Boxall A, Brian JV, Cartmell E, Chubb C, Churchley J, Costigan S, Crane M, Dempsey MJ, Dorrington B, Ellor B, Fick J, Holmes J, Hutchinson T, Karcher F, Kelleher SL, Marsden P, Noone G, Nunn MA, Oxford J, Rachwal T, et al.: Meeting report: risk assessment of Tamiflu use under pandemic conditions. Environ Health Perspect 2008, 116:1563-1567.
  • [75]Mexican Secretaría de Comunicaciones y Transportes: Boletín Mensual de Estadística Operacional de la Aviación Civil en México. [http://www.sct.gob.mx/uploads/media/BO_DICIEMBRE_09.pdf] webcite
  • [76]Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, Vespignani A: Human mobility networks, travel restrictions and the global spread of 2009 H1N1 pandemic. PLoS One 2011, 6:e16591.
  • [77]Cruz-Pacheco G, Duran L, Esteva L, Minzoni A, López-Cervantes M, Panayotaros P, Ahued A, Villaseñor I: Modelling of the influenza A/H1N1v outbreak in Mexico City, April-May 2009, with control sanitary measures. Euro Surveill 2009, 14:19254.
  • [78]Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M: Incidence of 2009 pandemic A H1N1 infection in England: a cross-serological study. Lancet 2010, 375:1100-1108.
  • [79]Ikonen N, Strengell M, Kinnunen L, Osterlund P, Pirhonen J, Broman M, Davidkin I, Ziegler T, Julkunen I: High frequency of cross-reacting antibodies against 2009 pandemic influenza A(H1N1) virus among the elderly in Finland. Euro Surveill 2010, 15:19478.
  • [80]Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, Liu F, Dong L, DeVos JR, Gargiullo PM, Brammer TL, Cox NJ, Tumpey TM, Katz JM: Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 2009, 361:1945-1952.
  • [81]Allwinn R, Geiler J, Berger A, Cinatl J, Doer HW: Determination of serum antibodies against swine-origin influenza A virus H1N1/09 by immunofluorescence, haemagglutination inhibition, and by neutralization tests: how is the prevalence rate of protecting antibodies in humans? Med Microbiol Immunol 2010, 199:117-121.
  • [82]Leung GM, Nicoll A: Reflections on Pandemic (H1N1) 2009 and the international response. PLoS Med 2010, 7:e1000346.
  • [83]U.Census: International programs. [http://www.census.gov/ipc/www/idb/] webcite
  • [84]United Kingdom Health Protection Agency: Swine influenza case definition. [http://www.see.nhs.uk/content/file/GP Zone/HPAcasedefiniftionforswineflu.pdf] webcite
  • [85]US Center for Disease Control: Case definition for influenza A (H1N1) virus infection. [http:/ / www.medicalcriteria.com/ site/ index.php?option=com_content&view=a rticle&id=251%3Ainfh1n1&catid=59%3A infetious-disease&Itemid=80&lang=en] webcite
  • [86]Aguilera JF, Paget WJ, Mosnier A, Heijnen ML, Uphoff H, van der Velden J, Vega T, Watson JM: Heterogeneous case definitions used for the surveillance of influenza in Europe. Euro J Epidemiol 2003, 18:751-754.
  • [87]Paget J, Marquet R, Meijer A, van der Velden K: Influenza activity in Europe during eight seasons (1999-2007): an evaluation of the indicators used to measure activity and an assessment of the timing, length and course of peak activity (spread) across Europe. BMC Infect Dis 2007, 7:141. BioMed Central Full Text
  • [88]Influenzanet. EPIWORK [http://www.epiwork.eu] webcite
  • [89]Brooks-Pollock E, Edmunds WJ, Eames KTD: Using an online survey of healthcare-seeking behaviour to estimate the magnitude and severity of the 2009 H1N1v influenza epidemic in England. BMC Infect Dis 2011, 11:68. BioMed Central Full Text
  • [90]Fleming DM: Influenza surveillance, the swine-flu pandemic, and the importance of virology. [http://clinicalevidence.bmj.com/downloads/16-11-09.pdf] webciteClin Evid 2009.
  • [91]van Hoek AJ, Miller E: Response to guest editorial "Influenza surveillance, the swine-flu pandemic, and the importance of virology". [http://clinicalevidence.bmj.com/ceweb/resources/editors-letter-response.jsp] webciteClin Evid 2010.
  • [92]Scalia Tomba G, Wallinga J: A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease. Math Biosci 2008, 214:70-72.
  • [93]Cowling BJ, Lau LL, Wu P, Wong HW, Fang VJ, Riley S, Nishiura H: Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1). BMC Infect Dis 2010, 10:82. BioMed Central Full Text
  • [94]Colizza V, Vespignani A: Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J Theor Biol 2008, 251:450-467.
  • [95]World Health Organization: Pandemic H1N1 2009. [http://www.who.int/csr/disease/swineflu/en/] webcite
  • [96]Réseau Sentinelles France, INSERM, UPMC, Insitut de Veille Sanitaire [http://websenti.u707.jussieu.fr/sentiweb/] webcite
  • [97]Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM: Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 2008, 452:750-54.
  • [98]Chao DL, Halloran ME, Obenchain VJ, Longini IM Jr: FluTE, a publicly available stochastic influenza epidemic simulation model. PloS Comput Biol 2010, 6:e1000656.
  • [99]World Health Organization: Seroepidemiological studies of pandemic influenza A(H1N1) 2009 virus. Wkly Epidemiol Rec 85 2010, 24:229-236.
  • [100]Carrat F, Pelat C, Levy-Bruhl D, Bonmarin I, Lapidus N: Planning for the next influenza H1N1 season: a modelling study. BMC Infecti Dis 2010, 10:301. BioMed Central Full Text
  • [101]US Center for Disease Control and Prevention: Updated CDC Estimates of 2009 H1N1 influenza cases, hospitalizations and deaths in the United States, April 2009-April 10, 2010. [http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm] webcite
  • [102]Baguelin M, Hoschler K, Stanford E, Waight P, Hardelid P, Andrews N, Miller E: Age-specific incidence of A/H1N1 2009 influenza infection in England from sequential antibody prevalence data using likelihood-based estimation. PLoS One 2011, 6:e17074.
  • [103]Ross T, Zimmer S, Burke D, Crevar C, Carter D, Stark J, Giles B, Zimmerman R, Ostroff S, Lee B: Seroprevalence Following the Second Wave of Pandemic 2009 H1N1 Influenza. PLoS Curr Influenza 2010, 1:RRN1148.
  • [104]Wu JT, Ma ES, Lee CK, Chu DK, Ho PL, Shen AL, Ho A, Hung IF, Riley S, Ho LM, Lin CK, Tsang T, Lo SV, Lau YL, Leung GM, Cowling BJ, Malik Peiris JS: The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong. Clin Infect Dis 2010, 51:1184.
  • [105]Chao DL, Matrajt L, Basta NE, Sugimoto JD, Dean B, Bagwell DA, Oiulfstad B, Halloran ME, Longini IM Jr: Planning for the control of pandemic influenza A(H1N1) in Los Angeles County and the United States. Pract Epidemiol 2011. doi:10.1093/aje/kwq497
  • [106]Ajelli M, Merler S, Pugliese A, Rizzo C: Model predictions and evaluation of possible control strategies for the 2009 A/H1N1v influenza pandemic in Italy. Epidemiol Infect 2011, 139:68.
  • [107]Nishiura H, Chowell G, Castillo-Chavez C: Did modeling overestimate the transmission potential of pandemic (H1N1-2009)? Sample size estimation for post-epidemic seroepidemiological studies. PLoS One 2011, 6:e17908.
  • [108]Grais RF, Eliis JH, Kress A, Glass GE: Modeling the spread of annual influenza epidemics in the U.S.: The potential role of air travel. Health Care Manag Sci 2004, 7:127.
  文献评价指标  
  下载次数:124次 浏览次数:16次