期刊论文详细信息
BMC Research Notes
Global metabolite profiling of mice with high-fat diet-induced obesity chronically treated with AMPK activators R118 or metformin reveals tissue-selective alterations in metabolic pathways
Yasumichi Hitoshi1  Donald G Payan1  Rajinder Singh1  Luke Boralsky1  Simon J Shaw1  Dane A Goff1  Lisa Gross1  Gerald Uy1  Vadim Markovtsov1  Yingwu Li1  Tian-Qiang Sun1  Yonchu Jenkins1 
[1] Rigel Pharmaceuticals, Inc., South San Francisco, CA, USA
关键词: Diet-induced obese mice;    Small molecule;    Metabolism;    Skeletal muscle;    Metabolomics;    Diabetes;    Mitochondria;    Complex I;    Metformin;    AMPK;   
Others  :  1127421
DOI  :  10.1186/1756-0500-7-674
 received in 2014-06-18, accepted in 2014-09-17,  发布年份 2014
PDF
【 摘 要 】

Background

The novel small molecule R118 and the biguanide metformin, a first-line therapy for type 2 diabetes (T2D), both activate the critical cellular energy sensor 5′-AMP-activated protein kinase (AMPK) via modulation of mitochondrial complex I activity. Activation of AMPK results in both acute responses and chronic adaptations, which serve to restore energy homeostasis. Metformin is thought to elicit its beneficial effects on maintenance of glucose homeostasis primarily though impacting glucose and fat metabolism in the liver. Given the commonalities in their mechanisms of action and that R118 also improves glucose homeostasis in a murine model of T2D, the effects of both R118 and metformin on metabolic pathways in vivo were compared in order to determine whether R118 elicits its beneficial effects through similar mechanisms.

Results

Global metabolite profiling of tissues and plasma from mice with diet-induced obesity chronically treated with either R118 or metformin revealed tissue-selective effects of each compound. Whereas metformin treatment resulted in stronger reductions in glucose and lipid metabolites in the liver compared to R118, upregulation of skeletal muscle glycolysis and lipolysis was apparent only in skeletal muscle from R118-treated animals. Both compounds increased β-hydroxybutyrate levels, but this effect was lost after compound washout. Metformin, but not R118, increased plasma levels of metabolites involved in purine metabolism.

Conclusions

R118 treatment but not metformin resulted in increased glycolysis and lipolysis in skeletal muscle. In contrast, metformin had a greater impact than R118 on glucose and fat metabolism in liver tissue.

【 授权许可】

   
2014 Jenkins et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220144304231.pdf 496KB PDF download
Figure 6. 48KB Image download
Figure 5. 85KB Image download
Figure 4. 89KB Image download
Figure 3. 68KB Image download
Figure 2. 55KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Baltgalvis KA, White K, Li W, Claypool MD, Lang W, Alcantara R, Singh BK, Friera AM, McLaughlin J, Hansen D, McCaughey K, Nguyen H, Smith IJ, Godinez G, Shaw SJ, Goff D, Singh R, Markovtsov V, Sun T-Q, Jenkins Y, Uy G, Li Y, Pan A, Gururaja T, Lau D, Park G, Hitoshi Y, Payan DG, Kinsella TM: Exercise performance and vascular insufficiency improve with AMPK activation in high-fat diet-fed mice. Am J Physiol Heart Circ Physiol 2014, 306(8):H1128-H1145.
  • [2]El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000, 275(1):223-228.
  • [3]Owen M, Doran E, Halestrap A: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000, 3:607-614.
  • [4]Jenkins Y, Sun T-Q, Markovtsov V, Foretz M, Li W, Nguyen H, Li Y, Pan A, Uy G, Gross L, Baltgalvis K, Yung SL, Gururaja T, Kinoshita T, Owyang A, Smith IJ, McCaughey K, White K, Godinez G, Alcantara R, Choy C, Ren H, Basile R, Sweeny DJ, Xu X, Issakani SD, Carroll DC, Goff DA, Shaw SJ, Singh R, et al.: AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS One 2013, 8(12):e81870.
  • [5]Bailey CJ, Turner RC: Metformin. N Engl J Med 1996, 334(9):574-579.
  • [6]Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010, 120(7):2355-2369.
  • [7]Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI: Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000, 49(12):2063-2069.
  • [8]Natali A, Ferrannini E: Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 2006, 49(3):434-441.
  • [9]Phielix E, Szendroedi J, Roden M: The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact. Trends Pharmacol Sci 2011, 32(10):607-616.
  • [10]Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Sci (New York, NY) 2005, 310(5754):1642-1646.
  • [11]Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ: Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013, 494(7436):256-260.
  • [12]Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014, 510(7506):542-546.
  • [13]Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen Z-P, Neill HM, Ford RJ, Palanivel R, O'Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR, O&apos: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013, 19(12):1649-1654.
  • [14]Evans A, DeHaven C, Barrett T, Mitchell M, Milgram E: Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 2009, 81(16):6656-6667.
  • [15]Lawton K, Berger A, Mitchell M, Milgram K, Evans A, Guo L, Hanson R, Kalhan S, Ryals J, Milburn M: Analysis of the adult human plasma metabolome. Pharmacogenomics 2008, 9(4):383-397.
  • [16]Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H: Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. PNAS 2011, 108(8):3270-3265.
  • [17]Glucophage/Glucophage XR Insert Available at [http://packageinserts.bms.com/pi/pi_glucophage_xr.pdf webcite]
  • [18]Lodhi IJ, Semenkovich CF: Peroxisomes: a Nexus for Lipid Metabolism and Cellular Signaling. Cell Metab 2014, 4(19):380-392.
  • [19]Jessen N, Sundelin EI, Moller AB: AMP kinase in exercise adaptation of skeletal muscle. Drug Discov Today 2014, 19(7):999-1002.
  • [20]Jørgensen SB, Richter EA, Wojtaszewski JFP: Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 2006, 574(Pt 1):17-31.
  • [21]Musi N, Yu H, Goodyear LJ: AMP-activated protein kinase regulation and action in skeletal muscle during exercise. Biochem Soc Trans 2003, 31(Pt 1):191-195.
  • [22]Horowitz JF, Klein S: Lipid metabolism during endurance exercise. Am J Clin Nutr 2000, 72(2 Suppl):558S-563S.
  • [23]Kiens B: Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 2006, 86(1):205-243.
  • [24]Egan B, Zierath JR: Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013, 17(2):162-184.
  • [25]Alsted TJ, Nybo L, Schweiger M, Fledelius C, Jacobsen P, Zimmermann R, Zechner R, Kiens B: Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am J Physiol Endocrinol Metab 2009, 296(3):E445-453.
  • [26]Brechtel K, Niess AM, Machann J, Rett K, Schick F, Claussen CD, Dickhuth HH, Haering HU, Jacob S: Utilisation of intramyocellular lipids (IMCLs) during exercise as assessed by proton magnetic resonance spectroscopy (1H-MRS). Horm Metab Res 2001, 33(2):63-66.
  • [27]Hurley BF, Nemeth PM, Martin WH 3rd, Hagberg JM, Dalsky GP, Holloszy JO: Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 1986, 60(2):562-567.
  • [28]Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ: Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002, 51(7):2074-2081.
  • [29]Ouyang J, Parakhia RA, Ochs RS: Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 2011, 286(1):1-11.
  • [30]Corominas-Faja B, Quirantes-Piné R, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Martin-Castillo B, Micol V, Joven J, Segura-Carretero A, Menendez JA: Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging 2012, 4(7):480-498.
  文献评价指标  
  下载次数:144次 浏览次数:19次