BMC Evolutionary Biology | |
Opsin evolution and expression in Arthropod compound Eyes and Ocelli: Insights from the cricket Gryllus bimaculatus | |
Matthias Gesemann1  Thomas Labhart1  Martin Kohler2  Kara Dannenhauer1  Miriam J Henze1  | |
[1] Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland;Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden | |
关键词: Gryllus bimaculatus; Orthoptera; Insect; Ocellus; Ventral band; Dorsal rim area; Compound eye; Spectral sensitivity; Visual pigment; Opsin; | |
Others : 1140365 DOI : 10.1186/1471-2148-12-163 |
|
received in 2012-04-17, accepted in 2012-08-24, 发布年份 2012 | |
【 摘 要 】
Background
Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial for understanding the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect.
Results
Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes.
Conclusions
Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a functional explanation. From the opsin phylogeny, we conclude that gene duplications, which permitted differential opsin expression in insect ocelli and compound eyes, occurred independently in several insect lineages and are recent compared to the origin of the eyes themselves.
【 授权许可】
2012 Henze et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150324234740746.pdf | 3350KB | download | |
Figure 1. | 41KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR: Shedding new light on opsin evolution. Proc Biol Sci 2012, 279:3-14.
- [2]Briscoe A, Chittka L: The evolution of color vision in insects. Annu Rev Entomol 2001, 46:471-510.
- [3]Hu KG, Reichert H, Stark WS: Electrophysiological characterization of Drosophila ocelli. J Comp Physiol 1978, 126:15-24.
- [4]Briscoe AD: Six opsins from the butterfly Papilio glaucus: Molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 2000, 51:110-121.
- [5]Velarde RA, Sauer CD, Walden KKO, Fahrbach SE, Robertson HM: Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 2005, 35:1367-1377.
- [6]Pollock JA, Benzer S: Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific. Nature 1988, 333:779-782.
- [7]Wakakuwa M, Stavenga DG, Arikawa K: Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol 2007, 83:27-34.
- [8]Jackowska M, Bao R, Liu Z, McDonald EC, Cook TA, Friedrich M: Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front Zool 2007, 4:24. BioMed Central Full Text
- [9]Colbourne J, Pfrender M, Gilbert D, Thomas W, Tucker A, Oakley T, Tokishita S, Aerts A, Arnold G, Basu M, Bauer D, Caceres C, Carmel L, Casola C, Choi J, Detter J, Dong Q, Dusheyko S, Eads B, Frohlich T, Geiler-Samerotte K, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva E, Kultz D, Laforsch C, Lindquist E, Lopez J, et al.: The ecoresponsive genome of Daphnia pulex. Science 2011, 331:555-561.
- [10]Kashiyama K, Seki T, Numata H, Goto SG: Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Mol Biol Evol 2009, 26:299-311.
- [11]Oakley TH, Huber DR: Differential expression of duplicated opsin genes in two eye types of ostracod crustaceans. J Mol Evol 2004, 59:239-249.
- [12]Porter ML, Bok MJ, Robinson PR, Cronin TW: Molecular diversity of visual pigments in Stomatopoda (Crustacea). Vis Neurosci 2009, 26:255-265.
- [13]Rajkumar P, Rollmann SM, Cook TA, Layne JE: Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator. J Exp Biol 2010, 213:4240-4248.
- [14]Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F: Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol 2008, 66:130-137.
- [15]Smith WC, Price DA, Greenberg RM, Battelle BA: Opsins from the lateral eyes and ocelli of the horseshoe crab, Limulus polyphemus. Proc Natl Acad Sci USA 1993, 90:6150-6154.
- [16]Dalal JS, Jinks RN, Cacciatore C, Greenberg RM, Battelle BA: Limulus opsins: Diurnal regulation of expression. Vis Neurosci 2003, 20:523-534.
- [17]Katti C, Kempler K, Porter ML, Legg A, Gonzalez R, Garcia-Rivera E, Dugger D, Battelle BA: Opsin co-expression in Limulus photoreceptors: Differential regulation by light and a circadian clock. J Exp Biol 2010, 213:2589-2601.
- [18]Mito T, Noji S: The two-spotted cricket Gryllus bimaculatus: An emerging model for developmental and regeneration studies. CSH Protoc 2008., 2008pdb.emo110
- [19]Grimaldi D, Engel MS: Evolution of the Insects. Cambridge: zCambridge University Press; 2005.
- [20]Gaunt MW, Miles MA: An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 2002, 19:748-761.
- [21]Homberg U: Multisensory processing in the insect brain. In Methods in Insect Sensory Neuroscience. Edited by Christensen TA. Boca Raton: CRC Press; 2004:3-25.
- [22]Bitsch C, Bitsch J: Evolution of eye structure and arthropod phylogeny. In Crustacea and arthropod relationships. Edited by Koenemann S, Jenner RA, Schram FR. New York: CRC Press; 2005:185-214.
- [23]Paulus HF: Eye structure and the monophyly of the Arthropoda. In Arthropod Phylogeny. Edited by Gupta AP. New York: Van Nostrand Reinhold Company; 1979:299-383.
- [24]Paulus HF: Phylogeny of the Myriapoda-Crustacea-Insecta: A new attempt using photoreceptor structure. J Zoolog Syst Evol Res 2000, 38:189-208.
- [25]Waloszek D: The "Orsten" window - Three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda. Paleontological Res 2003, 7:71-88.
- [26]Mayer G: Structure and development of onychophoran eyes: What is the ancestral visual organ in arthropods? Arthropod Struct Dev 2006, 35:231-245.
- [27]Nilsson D-E, Kelber A: A functional analysis of compound eye evolution. Arthropod Struct Dev 2007, 36:373-385.
- [28]Stavenga DG: Eye regionalization and spectral tuning of retinal pigments in insects. Trends Neurosci 1992, 15:213-218.
- [29]Stavenga DG, Kinoshita M, Yang EC, Arikawa K: Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 2001, 88:477-481.
- [30]Friedrich M: Evolution of insect eye development: First insights from fruit fly, grasshopper and flour beetle. Integr Comp Biol 2003, 43:508-521.
- [31]Friedrich M: Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod Struct Dev 2006, 35:357-378.
- [32]Friedrich M: Opsins and cell fate in the Drosophila Bolwig organ: Tricky lessons in homology inference. Bioessays 2008, 30:980-993.
- [33]Goodman LJ: Organisation and physiology of the insect dorsal ocellar system. In Handbook of Sensory Physiology. Volume VII/6C edition. Edited by Autrum H. Berlin, Heidelberg, New York: Springer-Verlag; 1981:201-286.
- [34]Mizunami M: Information processing in the insect ocellar system: Comparative approaches to the evolution of visual processing and neural circuits. Adv In Insect Phys 1994, 25:151-265.
- [35]Rence B, Lisy M, Garves B, Quinlan B: The role of ocelli in circadian singing rhythms of crickets. Physiol Entomol 1988, 13:201-212.
- [36]Nowosielski J, Patton R: Studies on circadian rhythm of the house cricket, Gryllus domesticus L. J Insect Physiol 1963, 9:401-410.
- [37]Yukizane M, Tomioka K: Neural pathways involved in mutual interactions between optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. J Comp Physiol A 1995, 176:601-610.
- [38]Abe Y, Ushirogawa H, Tomioka K: Circadian locomotor rhythms in the cricket, Gyrllodes sigillatus - I. Localization of the pacemaker and the photoreceptor. Zool Sci 1997, 14:719-727.
- [39]Jander R, Barry C: Phototactic push-pull-coupling between dorsal ocelli and compound eyes in phototropotaxis of locusts and crickets (Saltatoptera - Locusta migratoria and Gryllus bimaculatus). Z Vergl Physiol 1968, 57:432-458.
- [40]Ribi W, Warrant E, Zeil J: The organization of honeybee ocelli: Regional specializations and rhabdom arrangements. Arthropod Struct Dev 2011, 40:509-520.
- [41]Krapp HG: Ocelli. Curr Biol 2009, 19:R435-437.
- [42]Pohl R: Das postembryonale Wachstum der Retina und die Anatomie von Lamina und Medulla bei Gryllus bimaculatus (De Geer 1773). In Zool Jb Anat Volume 117. Jena: VEB Gustav Fischer Verlag; 1988:353-393.
- [43]Labhart T, Keller K: Fine-structure and growth of the polarization-sensitive dorsal rim area in the compound eye of larval crickets. Naturwissenschaften 1992, 79:527-529.
- [44]Takagi A, Kurita K, Terasawa T, Nakamura T, Bando T, Moriyama Y, Mito T, Noji S, Ohuchi H: Functional analysis of the role of eyes absent and sine oculis in the developing eye of the cricket Gryllus bimaculatus. Dev Growth Differ 2012, 54:227-240.
- [45]Burghause FMHR: Structural specialization in the dorso-frontal region of the cricket compound eye (Orthoptera, Grylloidea). Zool Jahrb Abt Allg Zool Physiol Tiere 1979, 83:502-525.
- [46]Nilsson D-E, Labhart T, Meyer E: Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol A 1987, 161:645-658.
- [47]Ukhanov K, Leertouwer H, Gribakin F, Stavenga D: Dioptrics of the facet lenses in the dorsal rim area of the cricket Gryllus bimaculatus. J Comp Physiol A 1996, 179:545-552.
- [48]Labhart T, Meyer E: Detectors for polarized skylight in insects: A survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 1999, 47:368-379.
- [49]Labhart T, Meyer E: Neural mechanisms in insect navigation: Polarization compass and odometer. Curr Opin Neurobiol 2002, 12:707-714.
- [50]Wehner R, Labhart T: Polarisation vision. In Invertebrate Vision. Edited by Warrant E, Nilsson DE. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press; 2006:291-348.
- [51]Blum M, Labhart T: Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 2000, 186:119-128.
- [52]Brunner D, Labhart T: Behavioral evidence for polarization vision in crickets. Physiol Entomol 1987, 12:1-10.
- [53]Labhart T, Hodel B, Valenzuela I: The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol 1984, 155:289-296.
- [54]Zufall F, Schmitt M, Menzel R: Spectral and polarized-light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus). J Comp Physiol A 1989, 164:597-608.
- [55]Labhart T, Petzold J, Helbling H: Spatial integration in polarization-sensitive interneurones of crickets: A survey of evidence, mechanisms and benefits. J Exp Biol 2001, 204:2423-2430.
- [56]Henze MJ, Labhart T: Haze, clouds and limited sky visibility: Polarotactic orientation of crickets under difficult stimulus conditions. J Exp Biol 2007, 219:3266-3276.
- [57]Chapman RF: The Insects. Structure and Function. Cambridge: Cambridge University Press; 1998.
- [58]GenBankhttp://www.ncbi.nlm.nih.gov/Genbank/ webcite
- [59]The International Aphid Genomics Consortium: Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 2010, 8:e1000313.
- [60]The Phylogeny.fr platformhttp://www.phylogeny.fr/version2_cgi/phylogeny.cgi webcite
- [61]Edgar RC: MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
- [62]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
- [63]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
- [64]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18:691-699.
- [65]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 2006, 55:539-552.
- [66]Chevenet F, Brun C, Banuls AL, Jacq B, Christen R: TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006, 7:439. BioMed Central Full Text
- [67]Westerfield M: The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio). 5th edition. Eugene: University of Oregon Press; 2007.
- [68]Wolfinger R: Covariance structure selection in general mixed models. Commun Stat Simulat 1993, 22:1079-1106.
- [69]Wolfinger RD: Heterogeneous variance-covariance structures for repeated measures. J Agric Biol Envir Stat 1996, 1:205-230.
- [70]Schaalje GB, McBride JB, Fellingham GW: Adequacy of approximations to distributions of test statistics in complex mixed linear models. J Agric Biol Environ Stat 2002, 7:512-524.
- [71]Littell RC, Milliken GA, Stroup WW, Wolfinger RD: SAS System for mixed models. Cary, NC: SAS Publishing; 1996.
- [72]Seki T, Fujishita S, Ito M, Matsuoka N, Tsukida K: Retinoid composition in the compound eyes of insects. Exp Biol 1987, 47:95-103.
- [73]Stavenga DG, Smits RP, Hoenders BJ: Simple exponential functions describing the absorbency bands of visual pigment spectra. Vision Res 1993, 33:1011-1017.
- [74]Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K: In search of the visual pigment template. Vis Neurosci 2000, 17:509-528.
- [75]Salcedo E, Zheng L, Phistry M, Bagg EE, Britt SG: Molecular basis for ultraviolet vision in invertebrates. J Neurosci 2003, 23:10873-10878.
- [76]Sakura M, Takasuga K, Watanabe M, Eguchi E: Diurnal and circadian rhythm in compound eye of cricket (Gryllus bimaculatus): Changes in structure and photon capture efficiency. Zoolog Sci 2003, 20:833-840.
- [77]Eggers A, Gewecke M: The dorsal rim area of the compound eye and polarization vision in the desert locust (Schistocerca gregaria). In Sensory Systems of Arthropods. Edited by Wiese K, Gribakin FG, Popov AV, Renninger G. Basel: Birkhäuser Verlag; 1993:101-109.
- [78]Homberg U, Paech A: Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 2002, 30:271-280.
- [79]Kitamoto J, Sakamoto K, Ozaki K, Mishina Y, Arikawa K: Two visual pigments in a single photoreceptor cell: Identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. J Exp Biol 1998, 201:1255-1261.
- [80]Arikawa K, Mizuno S, Kinoshita M, Stavenga DG: Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J Neurosci 2003, 23:4527-4532.
- [81]Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD: Beauty in the eye of the beholder: The two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 2006, 209:3079-3090.
- [82]Mazzoni EO, Celik A, Wernet MF, Vasiliauskas D, Johnston RJ, Cook TA, Pichaud F, Desplan C: Iroquois complex genes induce co-expression of rhodopsins in Drosophila. PLoS Biol 2008, 6:e97.
- [83]Kelber A: Invertebrate colour vision. In Invertebrate Vision. Edited by Warrant E, Nilsson D-E. Cambridge: Cambridge University Press; 2006:250-290.
- [84]Schwind R: Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res 1983, 232:53-63.
- [85]Schwind R: Geometrical-optics of the notonecta eye - adaptations to optical environment and way of life. J Comp Physiol 1980, 140:59-68.
- [86]Hu X, England JH, Lani AC, Tung JJ, Ward NJ, Adams SM, Barber KA, Whaley MA, O'Tousa JE: Patterned rhodopsin expression in R7 photoreceptors of mosquito retina: Implications for species-specific behavior. J Comp Neurol 2009, 516:334-342.
- [87]Ragge DR: An unusual case of mass migration by flight in Gryllus bimaculatus DeGeer Orthoptera Gryllidae. BIFAN, Series A 1972, 34:869-878.
- [88]Tanaka S, Tanaka K, Yasuhara Y, Nakahara Y, Katagiri C: Flight activity, flight fuels and lipophorins in a cricket, Gryllus bimaculatus. Entomological Science 1999, 2:457-465.
- [89]Lorenz MW: Oogenesis-flight syndrome in crickets: Age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female Gryllus bimaculatus. J Insect Physiol 2007, 53:819-832.
- [90]Shashar N, Sabbah S, Aharoni N: Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 2005, 1:472-475.
- [91]el Jundi B, Pfeiffer K, Homberg U: A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect. PLoS One 2011, 6:e27855.
- [92]Heinze S, Gotthardt S, Homberg U: Transformation of polarized light information in the central complex of the locust. J Neurosci 2009, 29:11783-11793.
- [93]Träger U, Homberg U: Polarization-sensitive descending neurons in the locust: Connecting the brain to thoracic ganglia. J Neurosci 2011, 31:2238-2247.
- [94]Friedrich M, Wood EJ, Wu M: Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool B Mol Dev Evol 2011, 316:484-499.
- [95]Warrant E, Kelber A, Frederiksen R: Ommatidial adaptations for spatial, spectral, and polarization vision in arthropods. In Invertebrate neurobiology. Edited by North G, Greenspan RJ. New York: Cold Spring Harbor Laboratory Press; 2007:123-154.
- [96]Chappell RL, DeVoe RD: Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies. J Gen Physiol 1975, 65:399-419.
- [97]Ruck P: The components of the visual system of a dragonfly. J Gen Psychol 1965, 49:289-307.
- [98]Sontag C: Spectral sensitivity studies on the visual system of the praying mantis, Tenodera sinensis. J Gen Physiol 1971, 57:93-112.
- [99]Wilson M: Functional organization of locust ocelli. J Comp Physiol 1978, 124:297-316.
- [100]Meyer-Rochow VB: Electrophysiologically determined spectral efficiencies of the compound eye and median ocellus in the bumblebee Bombus hortorum tarhakimalainen (Hymenoptera, Insecta). J Comp Physiol 1980, 139:261-266.
- [101]Goldsmith TH, Ruck PR: The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees; an electrophysiological study. J Gen Physiol 1958, 41:1171-1185.
- [102]Eaton JL: Spectral sensitivity of the ocelli of the adult cabbage-looper moth, Trichoplusia ni. J Comp Physiol 1976, 109:17-24.
- [103]Pappas LG, Eaton JL: The internal ocellus of Manduca sexta: Electroretinogram and spectral sensitivity. J Insect Physiol 1977, 23:1355-1358.
- [104]Yamazaki S, Yamashita S: Efferent control in the ocellus of a noctuid moth. J Comp Physiol A 1991, 169:647-652.
- [105]Kirschfeld K, Feiler R, Vogt K: Evidence for a sensitizing pigment in the ocellar photoreceptors of the fly (Musca, Calliphora). J Comp Physiol A 1988, 163:421-423.
- [106]Kirschfeld K, Lutz B: Spectral sensitivity of ocelli of Calliphora (Diptera). Z Naturforsch C 1977, 32:439-441.
- [107]Feiler R, Harris WA, Kirschfeld K, Wehrhahn C, Zuker CS: Targeted misexpression of a Drosophila opsin gene leads to altered visual function. Nature 1988, 333:737-741.
- [108]Spaethe J, Briscoe AD: Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J Exp Biol 2005, 208:2347-2361.
- [109]Lall AB, Trouth CO: The spectral sensitivity of the ocellar system in the cricket Gryllus firmus (Orthoptera, Gryllidae). J Insect Physiol 1989, 35:805-808.
- [110]Carulli JP, Chen DM, Stark WS, Hartl DL: Phylogeny and physiology of Drosophila opsins. J Mol Evol 1994, 38:250-262.
- [111]Engel M, Grimaldi D: New light shed on the oldest insect. Nature 2004, 427:627-630.
- [112]Glenner H, Thomsen PF, Hebsgaard MB, Sørensen MV, Willerslev E: The origin of insects. Science 2006, 314:1883-1884.
- [113]Oakley TH, Plachetzki DC, Rivera AS: Furcation, field-splitting, and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Struct Dev 2007, 36:386-400.
- [114]Merkel G: The effects of temperature and food quality on the larval development of Gryllus bimaculatus (Orthoptera, Gryllidae). Oecologia 1977, 30:129-140.