期刊论文详细信息
BMC Infectious Diseases
Induction of IFNα or IL-12 depends on differentiation of THP-1 cells in dengue infections without and with antibody enhancement
Kuender D Yang1  Jiin-Tsuey Cheng2  Lin Wang3  Rong-Fu Chen1 
[1] Department of Medical Research and Development, Show Chwan Health Care System, Changhua, Taiwan;Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan;Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
关键词: IL-12;    IFNα;    CD123;    Differentiation;    Deneritic cells;    Monocyte;   
Others  :  1158740
DOI  :  10.1186/1471-2334-12-340
 received in 2012-05-15, accepted in 2012-12-04,  发布年份 2012
PDF
【 摘 要 】

Background

Appropriate induction of the early Th1 cytokine IL-12 is a critical defense directed against viral infection. We have previously shown that different viruses elicited either IL-12 or IFNα dependent Th1 reactions. Using dengue-2 virus, we sought to explore how dengue-2 induced IL-12 or IFNα expression by monocytic and its derived dendritic cells.

Methods

We employed human monocytic cell line, THP-1, to investigate whether differentiation of monocytic cells is involved in the switch between IFNα and IL-12 induction. Flow cytometry, RT-PCR and ELISA were respectively used to determine cell differentiation, IL-12 and IFNα mRNA expression and protein production.

Results

THP-1, expressing CD123, which is a plasmacytoid dendritic cell marker, but not CD14, CD11b or CD11c revealed IFNα mRNA expression while stimulated by dengue-2. In contrast, PMA-induced THP-1 differentiation toward monocytic cells expressed CD11b+, and CD14+, but not CD123, and revealed exclusively IL-12 expression while stimulated by dengue-2. Further studies showed that CD123+ expressing THP-1 cells elicited higher IFNα expression in dose and time dependent induction after infection, and PMA-induced monocytic differentiation of THP-1 cells revealed IL-12 expression. Antibody-dependent enhancement of DEN-2 infection significantly suppressed the DEN-2 induced IL-12 p40 expression in monocytic differentiated THP-1 cells.

Conclusions

Clarification and modulation of the early Th1 reaction in different monocytic cells may change or prevent complication from dengue infection.

【 授权许可】

   
2012 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150408024011146.pdf 451KB PDF download
Figure 4. 65KB Image download
Figure 3. 53KB Image download
Figure 2. 38KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Clarke T: Dengue virus: break-bone fever. Nature 2002, 416(6882):672-674.
  • [2]Thomas SJ, Strickman D, Vaughn DW: Dengue epidemiology: virus epidemiology, ecology, and emergence. Adv Virus Res 2003, 61:235-289.
  • [3]WHO Expert Committee on Viral Haemorrhagic Fevers: Viral haemorrhagic fevers. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 1985, 721:5-126.
  • [4]Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, et al.: Dengue: a continuing global threat. Nat Rev Microbiol 2010, 8(12 Suppl):S7-S16.
  • [5]Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV: Dengue and dengue haemorrhagic fever. Lancet 1998, 352(9132):971-977.
  • [6]Monath TP: Dengue: the risk to developed and developing countries. Proc Natl Acad Sci USA 1994, 91(7):2395-2400.
  • [7]Butt N, Abbassi A, Munir SM, Ahmad SM, Sheikh QH: Haematological and biochemical indicators for the early diagnosis of dengue viral infection. J Coll Physicians Surg Pak 2008, 18(5):282-285.
  • [8]Nimmannitya S: Clinical manifestations of dengue/dengue haemorrhagic fever. In Monograph on dengue/dengue haemorrhagic fever. Edited by Thongcharoen P. New Delhi: WHO-SEARO; 1993:48-54.
  • [9]Burke DS, Nisalak A, Johnson DE, Scott RM: A prospective study of dengue infections in Bangkok. AmJTrop Med Hyg 1988, 38(1):172-180.
  • [10]Halstead SB, Nimmannitya S, Cohen SN: Observations related to pathogenesis of dengue hemorrhagic fever IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 1970, 42(5):311-328.
  • [11]Lipscomb MF, Masten BJ: Dendritic cells: immune regulators in health and disease. Physiol Rev 2002, 82(1):97-130.
  • [12]Mohamadzadeh M, Luftig R: Dendritic cells: In the forefront of immunopathogenesis and vaccine development - A review. J Immune Based Ther Vaccines 2004, 2(1):1. BioMed Central Full Text
  • [13]Sozzani S, Vermi W, Del Prete A, Facchetti F: Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol 2010, 31(7):270-277.
  • [14]Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A: The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 2009, 8(1):40-52.
  • [15]Rajkovic I, Dragicevic A, Vasilijic S, Bozic B, Dzopalic T, Tomic S, Majstorovic I, Vucevic D, Djokic J, Balint B, et al.: Differences in T-helper polarizing capability between human monocyte-derived dendritic cells and monocyte-derived Langerhans'-like cells. Immunology 2011, 132(2):217-225.
  • [16]Yu HR, Chen RF, Hong KC, Bong CN, Lee WI, Kuo HC, Yang KD: IL-12-independent Th1 polarization in human mononuclear cells infected with varicella-zoster virus. Eur J Immunol 2005, 35(12):3664-3672.
  • [17]Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, Barry CE 3rd, Freedman VH, Kaplan G: Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci USA 2001, 98(10):5752-5757.
  • [18]Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R, Biron CA: Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J Exp Med 1999, 189(8):1315-1328.
  • [19]Kumar H, Kawai T, Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol 2011, 30(1):16-34.
  • [20]Katashiba Y, Miyamoto R, Hyo A, Shimamoto K, Murakami N, Ogata M, Amakawa R, Inaba M, Nomura S, Fukuhara S, et al.: Interferon-alpha and interleukin-12 are induced, respectively, by double-stranded DNA and single-stranded RNA in human myeloid dendritic cells. Immunology 2011, 132(2):165-173.
  • [21]Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, Ozaki Y, Tomizawa H, Akira S, Fukuhara S: Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 2002, 195(11):1507-1512.
  • [22]Palmer DR, Sun P, Celluzzi C, Bisbing J, Pang S, Sun W, Marovich MA, Burgess T: Differential effects of dengue virus on infected and bystander dendritic cells. J Virol 2005, 79(4):2432-2439.
  • [23]Pollara G, Jones M, Handley ME, Rajpopat M, Kwan A, Coffin RS, Foster G, Chain B, Katz DR: Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J Immunol 2004, 173(6):4108-4119.
  • [24]Ito T, Wang YH, Liu YJ: Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by Toll-like receptor (TLR) 7 and TLR9. Springer Semin Immunopathol 2005, 26(3):221-229.
  • [25]Roses RE, Xu S, Xu M, Koldovsky U, Koski G, Czerniecki BJ: Differential production of IL-23 and IL-12 by myeloid-derived dendritic cells in response to TLR agonists. J Immunol 2008, 181(7):5120-5127.
  • [26]Rutella S, Danese S, Leone G: Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 2006, 108(5):1435-1440.
  • [27]Sallusto F, Cella M, Danieli C, Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995, 182(2):389-400.
  • [28]Jalili A: Dendritic cells and their role in cancer immunotherapy. Iran J Immunol 2007, 4(3):127-144.
  • [29]Larsson K, Lindstedt M, Borrebaeck CA: Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology 2006, 117(2):156-166.
  • [30]Chen RF, Yeh WT, Yang MY, Yang KD: A model of the real-time correlation of viral titers with immune reactions in antibody-dependent enhancement of dengue-2 infections. FEMS Immunol Med Microbiol 2001, 30(1):1-7.
  • [31]Guzman MG: Global voices of science. Deciphering dengue: the Cuban experience. Science 2005, 309(5740):1495-1497.
  • [32]Yang KD, Yeh WT, Yang MY, Chen RF, Shaio MF: Antibody-dependent enhancement of heterotypic dengue infections involved in suppression of IFNgamma production. J Med Virol 2001, 63(2):150-157.
  • [33]Chen RF, Liu JW, Yeh WT, Wang L, Chang JC, Yu HR, Cheng JT, Yang KD: Altered T helper 1 reaction but not increase of virus load in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol 2005, 44(1):43-50.
  • [34]Nagahara Y, Nagamori T, Tamegai H, Hitokuwada M, Yoshimi Y, Ikekita M, Shinomiya T: Inulin stimulates phagocytosis of PMA-treated THP-1 macrophages by involvement of PI3-kinases and MAP kinases. Biofactors 2011, 37(6):447-454.
  • [35]Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Dall'Asta V: Arginine transport in human monocytic leukemia THP-1 cells during macrophage differentiation. J Leukoc Biol 2011, 90(2):293-303.
  • [36]Maess MB, Sendelbach S, Lorkowski S: Selection of reliable reference genes during THP-1 monocyte differentiation into macrophages. BMC Mol Biol 2010, 11:90. BioMed Central Full Text
  • [37]Traore K, Trush MA, George M Jr, Spannhake EW, Anderson W, Asseffa A: Signal transduction of phorbol 12-myristate 13-acetate (PMA)-induced growth inhibition of human monocytic leukemia THP-1 cells is reactive oxygen dependent. Leuk Res 2005, 29(8):863-879.
  • [38]Bremner TA, D'Costa N, Dickson LA, Asseffa A: A decrease in glucose 6-phosphate dehydrogenase activity and mRNA is an early event in phorbol ester-induced differentiation of thp-1 promonocytic leukemia cells. Life Sci 1996, 58(12):1015-1022.
  • [39]Boonnak K, Dambach KM, Donofrio GC, Tassaneetrithep B, Marovich MA: Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J Virol 2011, 85(4):1671-1683.
  • [40]Chareonsirisuthigul T, Kalayanarooj S, Ubol S: Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 2007, 88(Pt 2):365-375.
  • [41]Wang L, Chen RF, Liu JW, Lee IK, Lee CP, Kuo HC, Huang SK, Yang KD: DC-SIGN (CD209) Promoter −336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. PLoS Negl Trop Dis 2011, 5(1):e934.
  • [42]Chen RF, Wang L, Cheng JT, Chuang H, Chang JC, Liu JW, Lin IC, Yang KD: Combination of CTLA-4 and TGFbeta1 gene polymorphisms associated with dengue hemorrhagic fever and virus load in a dengue-2 outbreak. Clin Immunol 2009, 131(3):404-409.
  • [43]Wang L, Chen RF, Liu JW, Yu HR, Kuo HC, Yang KD: Implications of dynamic changes among tumor necrosis factor-alpha (TNF-alpha), membrane TNF receptor, and soluble TNF receptor levels in regard to the severity of dengue infection. AmJTrop Med Hyg 2007, 77(2):297-302.
  • [44]Chen RF, Yang KD, Wang L, Liu JW, Chiu CC, Cheng JT: Different clinical and laboratory manifestations between dengue haemorrhagic fever and dengue fever with bleeding tendency. Trans R Soc Trop Med Hyg 2007, 101(11):1106-1113.
  • [45]Yeh WT, Chen RF, Wang L, Liu JW, Shaio MF, Yang KD: Implications of previous subclinical dengue infection but not virus load in dengue hemorrhagic fever. FEMS Immunol Med Microbiol 2006, 48(1):84-90.
  • [46]Yu HR, Chang JC, Chen RF, Chuang H, Hong KC, Wang L, Yang KD: Different antigens trigger different Th1/Th2 reactions in neonatal mononuclear cells (MNCs) relating to T-bet/GATA-3 expression. J Leukoc Biol 2003, 74(5):952-958.
  • [47]Nudelman G, Ge Y, Hu J, Kumar M, Seto J, Duke JL, Kleinstein SH, Hayot F, Sealfon SC, Wetmur JG: Coregulation mapping based on individual phenotypic variation in response to virus infection. Immunome Res 2010, 6:2. BioMed Central Full Text
  • [48]Pang T, Cardosa MJ, Guzman MG: Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol 2007, 85(1):43-45.
  • [49]Friberg H, Bashyam H, Toyosaki-Maeda T, Potts JA, Greenough T, Kalayanarooj S, Gibbons RV, Nisalak A, Srikiatkhachorn A, Green S, et al.: Cross-Reactivity and Expansion of Dengue-Specific T cells During Acute Primary and Secondary Infections in Humans. Sci Rep 2011, 1:51.
  • [50]Wahala WM, Silva AM: The human antibody response to dengue virus infection. Viruses 2011, 3(12):2374-2395.
  • [51]Pawitan JA: Dengue virus infection: predictors for severe dengue. Acta Med Indones 2011, 43(2):129-135.
  • [52]Restrepo BN, Ramirez RE, Arboleda M, Alvarez G, Ospina M, Diaz FJ: Serum levels of cytokines in two ethnic groups with dengue virus infection. AmJTrop Med Hyg 2008, 79(5):673-677.
  • [53]Pulendran B: Variegation of the immune response with dendritic cells and pathogen recognition receptors. J Immunol 2005, 174(5):2457-2465.
  • [54]Rovera G, Ferrero D, Pagliardi GL, Vartikar J, Pessano S, Bottero L, Abraham S, Lebman D: Induction of differentiation of human myeloid leukemias by phorbol diesters: phenotypic changes and mode of action. Ann N Y Acad Sci 1982, 397:211-220.
  • [55]Kamiya T, Makino J, Hara H, Inagaki N, Adachi T: Extracellular-superoxide dismutase expression during monocytic differentiation of U937 cells. J Cell Biochem 2011, 112(1):244-255.
  • [56]Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH: The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010, 5(1):e8668.
  文献评价指标  
  下载次数:56次 浏览次数:71次