期刊论文详细信息
BMC Medical Genomics
MicroRNA profiling of a CD133+ spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line
Young Tae Kim1  Sang Wun Kim2  Sunghoon Kim2  Jae Hoon Kim2  Ga Won Yim2  Maria Lee2  Eun Ji Nam2 
[1] Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seongsan-no 250, Seodaemun-gu, C.P.O. Box 8044, Seoul, South Korea, 120-752;Institute of Women’s Life Medical Science, Women’s Cancer Clinic, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, South Korea
关键词: Chemoresistance;    OVCAR3;    CD133;    Ovarian cancer;    Cancer stem cell;    MicroRNA;   
Others  :  1134913
DOI  :  10.1186/1755-8794-5-18
 received in 2011-12-22, accepted in 2012-03-10,  发布年份 2012
PDF
【 摘 要 】

Background

Cancer stem cells (CSCs) are thought to be a source of tumor recurrence due to their stem cell-like properties. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has an important role in tumorigenesis. Cluster of differentiation (CD) 133+ and spheroid formation have been reported to be one of the main features of ovarian CSCs. Therefore, we determined the miRNA expression profile of a CD133+ spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line.

Methods

Initially, we confirmed the enrichment of the OVCAR3 CD133 subpopulation by evaluating in vitro anchorage-independent growth. After obtaining a subpopulation of CD133+ OVCAR3 cells with > 98% purity via cell sorting, miRNA microarray and real-time reverse transcription-polymerase chain reaction (RT-PCR) were performed to evaluate its miRNA profile.

Results

We found 37 differentially expressed miRNAs in the CD133+ spheroid-forming subpopulation of OVCAR3 cells, 34 of which were significantly up-regulated, including miR-205, miR-146a, miR-200a, miR-200b, and miR-3, and 3 of which were significantly down-regulated, including miR-1202 and miR-1181.

Conclusions

Our results indicate that dysregulation of miRNA may play a role in the stem cell-like properties of ovarian CSCs.

【 授权许可】

   
2012 Nam et al.; licensee BioMed Central Ltd; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306102057208.pdf 1092KB PDF download
Figure 5 . 51KB Image download
Figure 4 . 34KB Image download
Figure 3 . 48KB Image download
Figure 2 . 30KB Image download
Figure 1 . 49KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

【 参考文献 】
  • [1]Marsden DE, Friedlander M, Hacker NF: Current management of epithelial ovarian carcinoma: a review. Semin Surg Oncol 2000, 19(1):11-19.
  • [2]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006, 66(19):9339-9344.
  • [3]Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444(7120):756-760.
  • [4]Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3(7):730-737.
  • [5]Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005, 65(13):5506-5511.
  • [6]Bapat SA, Mali AM, Koppikar CB, Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005, 65(8):3025-3029.
  • [7]Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 2009, 27(12):2875-2883.
  • [8]Hannon GJ: RNA interference. Nature 2002, 418(6894):244-251.
  • [9]Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, Johnson L, Reddy EP: Liver stem cells and hepatocellular carcinoma. Hepatology 2009, 49(1):318-329.
  • [10]Wu Q, Guo R, Lin M, Zhou B, Wang Y: MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 2011, 122(1):149-154.
  • [11]Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C, Rutherford T, Mor G: TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 2010, 29(24):3545-3553.
  • [12]Guo R, Wu Q, Liu F, Wang Y: Description of the CD133+ subpopulation of the human ovarian cancer cell line OVCAR3. Oncol Rep 2011, 25(1):141-146.
  • [13]Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, Pagano SF, Parati EA: Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res 2003, 993(1–2):18-29.
  • [14]Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and concepts. Annu Rev Med 2007, 58:267-284.
  • [15]Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G: Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer 2008, 18(3):506-514.
  • [16]Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008, 40(5):499-507.
  • [17]Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, Iglehart JD, Weinberg RA: Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 2007, 12(2):160-170.
  • [18]Chen J, Wang L, Matyunina LV, Hill CG, McDonald J: Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells. Gynecol Oncol 121(1):200-205.
  • [19]Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R: Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007, 25(5):387-392.
  • [20]Greene SB, Herschkowitz JI, Rosen JM: The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol 7(3):300-304.
  • [21]Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B: Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 2010, 1:e105.
  • [22]Starczynowski DT, Kuchenbauer F, Wegrzyn J, Rouhi A, Petriv O, Hansen CL, Humphries RK, Karsan A: MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol 2011, 39(2):167-178. e164
  • [23]Li Y, 2nd Vandenboom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH: miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010, 70(4):1486-1495.
  • [24]Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, Kim CW: MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res 2011, 17(14):4761-4771.
  • [25]Kim HS, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee JW, Shahzad MM, Nick AM, Lee SJ, Roh JW, Nishimura M, Mangala L, Bottsford-Miller J, Gallick GE, Lopez-Berestein G, Sood AK: Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 2011, 17(7):1713-1721.
  • [26]Smith JA, Ngo H, Martin MC, Wolf JK: An evaluation of cytotoxicity of the taxane and platinum agents combination treatment in a panel of human ovarian carcinoma cell lines. Gynecol Oncol 2005, 98(1):141-145.
  • [27]Cohn DE, Fabbri M, Valeri N, Alder H, Ivanov I, Liu CG, Croce CM, Resnick KE: Comprehensive miRNA profiling of surgically staged endometrial cancer. Am J Obstet Gynecol 2010, 202(6):656. e651-658
  文献评价指标  
  下载次数:27次 浏览次数:9次