| BMC Systems Biology | |
| An organogenesis network-based comparative transcriptome analysis for understanding early human development in vivo and in vitro | |
| Kankan Wang3  Ji Zhang3  Ying Jin4  Ying Yang4  Wen Jin1  Hai Fang2  | |
| [1] State Key Laboratory of Medical Genomics, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine (SJTU-SM), Ruijin Rd. II, Shanghai 200025, China;Department of Computer Science, University of Bristol, Woodland Road, Bristol BS8 1UB, UK;Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and SJTU-SM, 225 South Chongqing Road, Shanghai 200025, China;Shanghai Stem Cell Institute, 225 South Chongqing Road, Shanghai 200025, China | |
| 关键词: Transcriptome; Gene set enrichment analysis; Differentiation-relevant module; Stemness-relevant module; Human organogenesis; Integrated networks; | |
| Others : 1160460 DOI : 10.1186/1752-0509-5-108 |
|
| received in 2011-04-04, accepted in 2011-07-06, 发布年份 2011 | |
PDF
|
|
【 摘 要 】
Background
Integrated networks hold great promise in a variety of contexts. In a recent study, we have combined expression and interaction data to identify a putative network underlying early human organogenesis that contains two modules, the stemness-relevant module (hStemModule) and the differentiation-relevant module (hDiffModule). However, owing to its hypothetical nature, it remains unclear whether this network allows for comparative transcriptome analysis to advance our understanding of early human development, both in vivo and in vitro.
Results
Based on this integrated network, we here report comparisons with the context-dependent transcriptome data from a variety of sources. By viewing the network and its two modules as gene sets and conducting gene set enrichment analysis, we demonstrate the network's utility as a quantitative monitor of the stem potential versus the differentiation potential. During early human organogenesis, the hStemModule reflects the generality of a gradual loss of the stem potential. The hDiffModule indicates the stage-specific differentiation potential and is therefore not suitable for depicting an extended developmental window. Processing of cultured cells of different types further revealed that the hStemModule is a general indicator that distinguishes different cell types in terms of their stem potential. In contrast, the hDiffModule cannot distinguish between differentiated cells of different types but is able to predict differences in the differentiation potential of pluripotent cells of different origins. We also observed a significant positive correlation between each of these two modules and early embryoid bodies (EBs), which are used as in vitro differentiation models. Despite this, the network-oriented comparisons showed considerable differences between the developing embryos and the EBs that were cultured in vitro over time to try to mimic in vivo processes.
Conclusions
We strongly recommend the use of these two modules either when pluripotent cell types of different origins are involved or when the comparisons made are constrained to the in vivo embryos during early human organogenesis (and an equivalent in vitro differentiation models). Network-based comparative transcriptome analysis will contribute to an increase in knowledge about human embryogenesis, particularly when only transcriptome data are currently available. These advances will add an extra dimension to network applications.
【 授权许可】
2011 Fanget al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150410115756292.pdf | 2403KB | ||
| Figure 3. | 46KB | Image | |
| Figure 2. | 61KB | Image | |
| Figure 1. | 60KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Sharan R, Ulitsky I, Shamir R: Network-based prediction of protein function. Mol Syst Biol 2007, 3:88.
- [2]Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM: A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 2008, 40(2):181-188.
- [3]Lee I, Lehner B, Vavouri T, Shin J, Fraser AG, Marcotte EM: Predicting genetic modifier loci using functional gene networks. Genome Res 2010, 20(8):1143-1153.
- [4]Barabasi AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12(1):56-68.
- [5]Pattin KA, Moore JH: Role for protein-protein interaction databases in human genetics. Expert Rev Proteomics 2009, 6(6):647-659.
- [6]Emily M, Mailund T, Hein J, Schauser L, Schierup MH: Using biological networks to search for interacting loci in genome-wide association studies. Eur J Hum Genet 2009, 17(10):1231-1240.
- [7]Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV: Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 2010, 140(5):731-743.
- [8]Navratil V, de Chassey B, Combe CR, Lotteau V: When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Syst Biol 2011, 5:13. BioMed Central Full Text
- [9]Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002, 18(Suppl 1):S233-240.
- [10]Ulitsky I, Shamir R: Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 2007, 1:8. BioMed Central Full Text
- [11]Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, et al.: Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007, 2(10):2366-2382.
- [12]Lin CC, Hsiang JT, Wu CY, Oyang YJ, Juan HF, Huang HC: Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy. BMC Syst Biol 2010, 4:138. BioMed Central Full Text
- [13]Carlson BM: Human embryology and developmental biology. 3rd edition. St. Louis: Mosby; 2004.
- [14]Dobson AT, Raja R, Abeyta MJ, Taylor T, Shen S, Haqq C, Pera RA: The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet 2004, 13(14):1461-1470.
- [15]Li SS, Liu YH, Tseng CN, Singh S: Analysis of gene expression in single human oocytes and preimplantation embryos. Biochem Biophys Res Commun 2006, 340(1):48-53.
- [16]Wells D, Patrizio P: Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. Am J Obstet Gynecol 2008, 198(4):e451-459. discussion 455 e459-411
- [17]Zhang P, Zucchelli M, Bruce S, Hambiliki F, Stavreus-Evers A, Levkov L, Skottman H, Kerkela E, Kere J, Hovatta O: Transcriptome profiling of human pre-implantation development. PLoS One 2009, 4(11):e7844.
- [18]Assou S, Boumela I, Haouzi D, Anahory T, Dechaud H, De Vos J, Hamamah S: Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Hum Reprod Update 2011, 17(2):272-290.
- [19]Geng X, Oliver G: Elucidating the molecular characteristics of organogenesis in human embryos. Genome Biol 2010, 11(8):130. BioMed Central Full Text
- [20]Fang H, Yang Y, Li C, Fu S, Yang Z, Jin G, Wang K, Zhang J, Jin Y: Transcriptome analysis of early organogenesis in human embryos. Dev Cell 2010, 19(1):174-184.
- [21]Yi H, Xue L, Guo MX, Ma J, Zeng Y, Wang W, Cai JY, Hu HM, Shu HB, Shi YB, Li WX: Gene expression atlas for human embryogenesis. FASEB J 2010, 24(9):3341-3350.
- [22]Wang K, Fang H, Xiao D, Zhu X, He M, Pan X, Shi J, Zhang H, Jia X, Du Y, Zhang J: Converting redox signaling to apoptotic activities by stress-responsive regulators HSF1 and NRF2 in fenretinide treated cancer cells. PLoS One 2009, 4(10):e7538.
- [23]Fang H, Wang K, Zhang J: Transcriptome and proteome analyses of drug interactions with natural products. Curr Drug Metab 2008, 9(10):1038-1048.
- [24]Fang H, Du Y, Xia L, Li J, Zhang J, Wang K: A Topology-Preserving Selection and Clustering Approach to Multidimensional Biological Data. OMICS 2011, in press.
- [25]Mitiku N, Baker JC: Genomic analysis of gastrulation and organogenesis in the mouse. Dev Cell 2007, 13(6):897-907.
- [26]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-956.
- [27]Assou S, Le Carrour T, Tondeur S, Strom S, Gabelle A, Marty S, Nadal L, Pantesco V, Reme T, Hugnot JP, Gasca S, Hovatta O, Hamamah S, Klein B, De Vos J: A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 2007, 25(4):961-973.
- [28]Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 2007, 1(3):299-312.
- [29]Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW: BIND--The Biomolecular Interaction Network Database. Nucleic Acids Res 2001, 29(1):242-245.
- [30]Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004, (32 Database):D449-451.
- [31]Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H: IntAct--open source resource for molecular interaction data. Nucleic Acids Res 2007, (35 Database):D561-565.
- [32]Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM, Menon S, Hanumanthu G, Gupta M, Upendran S, Gupta S, Mahesh M, Jacob B, Mathew P, Chatterjee P, Arun KS, Sharma S, Chandrika KN, Deshpande N, Palvankar K, Raghavnath R, Krishnakanth R, Karathia H, Rekha B, Nayak R, Vishnupriya G, et al.: Human protein reference database--2006 update. Nucleic Acids Res 2006, (34 Database):D411-414.
- [33]Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005, (33 Database):D428-432.
- [34]von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P: STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 2007, (35 Database):D358-362.
- [35]Hood L, Heath JR, Phelps ME, Lin B: Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306(5696):640-643.
- [36]Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009, (37 Database):D885-890.
- [37]Muller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, Rao MS, Shamir R, Schwartz PH, Schmidt NO, Loring JF: Regulatory networks define phenotypic classes of human stem cell lines. Nature 2008, 455(7211):401-405.
- [38]Lu SJ, Hipp JA, Feng Q, Hipp JD, Lanza R, Atala A: GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes. Genome Biol 2007, 8(11):R240. BioMed Central Full Text
- [39]Sun BW, Yang AC, Feng Y, Sun YJ, Zhu Y, Zhang Y, Jiang H, Li CL, Gao FR, Zhang ZH, Wang WC, Kong XY, Jin G, Fu SJ, Jin Y: Temporal and parental-specific expression of imprinted genes in a newly derived Chinese human embryonic stem cell line and embryoid bodies. Hum Mol Genet 2006, 15(1):65-75.
- [40]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102(43):15545-15550.
- [41]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article 3.
- [42]Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP: GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 2007, 23(23):3251-3253.
- [43]Waddington CH: The strategy of the genes: a discussion of some aspects of theoretical biology. Allen, Unwin; 1957.
- [44]Graf T, Enver T: Forcing cells to change lineages. Nature 2009, 462(7273):587-594.
- [45]Macarthur BD, Ma'ayan A, Lemischka IR: Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009, 10(10):672-681.
- [46]Bhattacharya S, Zhang Q, Andersen ME: A deterministic map of Waddington's epigenetic landscape for cell fate specification. BMC Syst Biol 2011, 5:85. BioMed Central Full Text
- [47]Wang J, Zhang K, Xu L, Wang E: Quantifying the Waddington landscape and biological paths for development and differentiation. Proc Natl Acad Sci USA 2011, 108(20):8257-8262.
- [48]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282(5391):1145-1147.
- [49]Pera MF, Cooper S, Mills J, Parrington JM: Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 1989, 42(1):10-23.
- [50]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4):663-676.
- [51]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131(5):861-872.
- [52]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Thomson JA: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318(5858):1917-1920.
- [53]Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ: Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451(7175):141-146.
- [54]Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009, 5(1):111-123.
- [55]Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009, 41(12):1350-1353.
- [56]Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW: The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 1991, 113(4):1105-1114.
- [57]Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R: The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985, 87:27-45.
- [58]Xiao L, Wang K, Teng Y, Zhang J: Component plane presentation integrated self-organizing map for microarray data analysis. FEBS Lett 2003, 538(1-3):117-124.
- [59]Fang H: Topology-Preserving Selection and Clustering (TPSC). [http://www.cs.bris.ac.uk/~hfang/TPSC/index.html] webcite
- [60]Gene Set Enrichment Analysis (GSEA) [http://www.broadinstitute.org/gsea/index.jsp] webcite
- [61]Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995, 57(1):289-300.
PDF