期刊论文详细信息
BMC Genomics
Gene silencing via DNA methylation in naturally occurring Tragopogon miscellus (Asteraceae) allopolyploids
Jennifer A Tate2  Pamela S Soltis1  Douglas E Soltis1  V Vaughan Symonds2  Tina Sehrish2 
[1] Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
关键词: Whole-genome duplication;    Tragopogon;    Gene silencing;    DNA methylation;    Allopolyploidy;   
Others  :  1216250
DOI  :  10.1186/1471-2164-15-701
 received in 2014-05-20, accepted in 2014-08-18,  发布年份 2014
PDF
【 摘 要 】

Background

Hybridization coupled with whole-genome duplication (allopolyploidy) leads to a variety of genetic and epigenetic modifications in the resultant merged genomes. In particular, gene loss and gene silencing are commonly observed post-polyploidization. Here, we investigated DNA methylation as a potential mechanism for gene silencing in Tragopogon miscellus (Asteraceae), a recent and recurrently formed allopolyploid. This species, which also exhibits extensive gene loss, was formed from the diploids T. dubius and T. pratensis.

Results

Comparative bisulfite sequencing revealed CG methylation of parental homeologs for three loci (S2, S18 and TDF-44) that were previously identified as silenced in T. miscellus individuals relative to the diploid progenitors. One other locus (S3) examined did not show methylation, indicating that other transcriptional and post-transcriptional mechanisms are likely responsible for silencing that homeologous locus.

Conclusions

These results indicate that Tragopogon miscellus allopolyploids employ diverse mechanisms, including DNA methylation, to respond to the potential shock of genome merger and doubling.

【 授权许可】

   
2014 Sehrish et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629095749465.pdf 1127KB PDF download
Figure 1. 148KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Paterson AH, Chapman BA, Kissinger JC, Bowers JE, Feltus FA, Estill JC: Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 2006, 22(11):597-602.
  • [2]Wolfe KH: Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet 2001, 2(5):333-341.
  • [3]Hudson CM, Conant GC: Yeast as a window into changes in genome complexity due to polyploidization. In Polyploidy and genome evolution. Edited by Soltis DE, Soltis PS. Berlin Heidelberg: Springer; 2012:293-308.
  • [4]Cañestro C: Two rounds of whole-genome duplication: evidence and impact on the evolution of vertebrate innovations. In Polyploidy and genome evolution. Edited by Soltis DE, Soltis PS. Berlin Heidelberg: Springer; 2012:309-339.
  • [5]Braasch I, Postlethwait JH: Polyploidy in fish and the teleost genome duplication. In Polyploidy and genome evolution. Edited by Soltis DE, Soltis PS. Berlin Heidelberg: Springer; 2012:341-383.
  • [6]Sankoff D, Nadeau J, Vision T, Brown D: Genome archaeology: detecting ancient polyploidy in contemporary genomes. In Comparative Genomics, Volume 1. Netherlands: Springer; 2000:479-491.
  • [7]Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlaurbaum SE, Schuster SC, Ma H, Leebens-Mack J, de Pamphilis C: Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473:97-100.
  • [8]Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng CF, Sankoff D, De Pamphilis CW, Wall PK, Soltis PS: Polyploidy and angiosperm diversification. Am J Bot 2009, 96(1):336-348.
  • [9]Ramsey J, Schemske DW: Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 1998, 29:467-501.
  • [10]Madlung A: Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 2013, 110(2):99-104.
  • [11]Salmon A, Ainouche ML, Wendel JF: Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 2005, 14(4):1163-1175.
  • [12]Paun O, Fay MF, Soltis DE, Chase MW: Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 2007, 56(3):649-656.
  • [13]Ma XF, Gustafson JP: Allopolyploidization-accommodated genomic sequence changes in Triticale. Annals of Botany 2008, 101(6):825-832.
  • [14]Chen Z: Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annual Rev Plant Biol 2007, 58:377-406.
  • [15]Comai L: The advantages and disadvantages of being polyploid. Nat Rev Genet 2005, 6:836-846.
  • [16]Wendel JF, Flagel LE, Adams KL: Jeans, genes, and genomes: cotton as a model for studying polyploidy. In Polyploidy and genome evolution. Edited by Soltis PS, Soltis DE. Berlin Heidelberg: Springer; 2012:181-207.
  • [17]Chester M, Gallagher JP, Symonds VV, da Silva AVC, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE: Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A 2012, 109(4):1176-1181.
  • [18]Jackson S, Chen ZJ: Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 2010, 13(2):153-159.
  • [19]Tang ZX, Wu M, Zhang HQ, Yan BJ, Tan FQ, Zhang HY, Fu SL, Ren ZL: Loss of parental coding sequences in an early generation of wheat-rye allopolyploid. Int J Plant Sci 2012, 173(1):1-6.
  • [20]Xiong Z, Gaeta RT, Pires JC: Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci 2011, 108(19):7908-7913.
  • [21]Buggs RJA, Chamala S, Wu W, Tate JA, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB: Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Current Biology 2012, 22(3):248-252.
  • [22]Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 2008, 42:443-461.
  • [23]Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, Nichols RA, Pancholi MR, Grandbastien M-A, Leitch AR: Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J 2013, 74(5):829-839.
  • [24]Zielinski M-L, Scheid OM: Meiosis in polyploids. In Polyploidy and genome evolution. Edited by Soltis DE, Soltis PS. Berlin Heidelberg: Springer; 2012:33-55.
  • [25]Liu B, Wendel JF: Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 2003, 29(3):365-379.
  • [26]Rapp RA, Wendel JF: Epigenetics and plant evolution. New Phytologist 2005, 168:81-91.
  • [27]Zeng ZX, Zhang T, Li GR, Liu C, Yang ZJ: Phenotypic and epigenetic changes occurred during the autopolyploidization of Aegilops tauschii. Cereal Res Comm 2012, 40(4):476-485.
  • [28]Lee D, Shin C: MicroRNA–target interactions: new insights from genome-wide approaches. Ann New York Acad Sci 2012, 1271(1):118-128.
  • [29]Halfmann R, Lindquist S: Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 2010, 330(6004):629-632.
  • [30]Vanyushin BF, Ashapkin VV: DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 2011, 1809(8):360-368.
  • [31]Chan SWL, Henderson IR, Jacobsen SE: Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 2005, 6(7):351-360.
  • [32]Finnegan EJ, Genger RK, Peacock WJ, Dennis ES: DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 1998, 49:223-247.
  • [33]Vanyushin BF: DNA methylation in plants. In DNA methylation: basic mechanisms, Volume 301. Edited by Doerfler W, Böhm P. Berlin Heidelberg: Springer; 2006:67-122.
  • [34]He X-J, Chen T, Zhu J-K: Regulation and function of DNA methylation in plants and animals. Cell Res 2011, 21(3):442-465.
  • [35]Ji L, Chen X: Regulation of small RNA stability: methylation and beyond. Cell Res 2012, 22(4):624-636.
  • [36]Martienssen RA, Colot V: DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 2001, 293(5532):1070-1074.
  • [37]Ownbey M: Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 1950, 37(7):487-499.
  • [38]Soltis DE, Soltis PS: Allopolyploid speciation in Tragopogon - insights from chloroplast DNA. Am J Bot 1989, 76(8):1119-1124.
  • [39]Ownbey M, McCollum GD: Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Am J Bot 1953, 40(10):788-796.
  • [40]Soltis PS, Plunkett GM, Novak SJ, Soltis DE: Genetic-variation in Tragopogon species - additional origins of the allotetraploids T. mirus and T. miscellus (Compositae). Am J Bot 1995, 82(10):1329-1341.
  • [41]Tate JA, Joshi P, Soltis KA, Soltis PS, Soltis DE: On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biology 2009, 9:80.
  • [42]Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS, Soltis DE: Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 2009, 103(1):73-81.
  • [43]Tate JA, Ni Z, Scheen A-C, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE: Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 2006, 173(3):1599-1611.
  • [44]Shawn JC, Suhua F, Xiaoyu Z, Zugen C, Barry M, Christian DH, Sriharsa P, Stanley FN, Matteo P, Steven EJ: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452(7184):215-219.
  • [45]Julie AL, Steven EJ: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010, 11(3):204-220.
  • [46]Grunau C, Clark SJ, Rosenthal A: Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 2001, 29(13):e65-65.
  • [47]Genereux DP, Johnson WC, Burden AF, Stoger R, Laird CD: Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 2008, 37(15):e150.
  • [48]Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010, 11:204-220.
  • [49]Ma X, Lv S, Zhang C, Yang C: Histone deacetylases and their functions in plants. Plant Cell Reports 2013, 32(4):465-478.
  • [50]Luo M, Yu C-W, Chen F-F, Zhao L, Tian G, Liu X, Cui Y, Yang J-Y, Wu K: Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genetics 2012, 8(12):e1003114.
  • [51]Kim J-M, To TK, Seki M: An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by HISTONE DEACETYLASE 6. Plant Cell Physiol 2012, 53(5):794-800.
  • [52]Feng X, Guang S: Small RNAs, RNAi and the inheritance of gene silencing in Caenorhabditis elegans. J Genet Genomics 2013, 40(4):153-160.
  • [53]Ketting RF: The many faces of RNAi. Developmental Cell 2011, 20(2):148-161.
  • [54]Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, Kennedy S: Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 2010, 465(7301):1097-1101.
  • [55]Carthew RW, Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136(4):642-655.
  • [56]Herrera CM, Bazaga P: Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytologist 2010, 187:867-876.
  • [57]Paun O, Bateman R, Fay M, Luna J, Moat J, Hedren M, Chase M: Altered gene expression and ecological divergence in sibling allopolyploids of Dactylorhiza (Orchidaceae). BMC Evol Biol 2011, 11(1):113.
  • [58]Paun O, Bateman RM, Fay MF, Hedren M, Civeyrel L, Chase MW: Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 2010, 27(11):2465-2473.
  • [59]Zhang X, Ge X, Shao Y, Sun G, Li Z: Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. Plos One 2013, 8(2):e56346.
  • [60]Hu Z, Han Z, Song N, Chai L, Yao Y, Peng H, Ni Z, Sun Q: Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat (Triticum aestivum). New Phytologist 2013, 197(4):1344-1352.
  • [61]Wang Y, Wang X, Lee T-H, Mansoor S, Paterson AH: Gene body methylation shows distinct patterns associated with different gene origins and duplication modes and has a heterogeneous relationship with gene expression in Oryza sativa (rice). New Phytologist 2013, 198(1):274-283.
  • [62]Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR: Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006, 126(6):1189-1201.
  • [63]Chester M, Lipman MJ, Gallagher JP, Soltis PS, Soltis DE: An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus (Asteraceae). Chromosome Res 2013, 21(1):75-85.
  • [64]Lim KY, Soltis DE, Soltis PS, Tate JA, Matyášek R, Šrubařová HS, Kovařík A, Pires JC, Xiong Z, Leitch AR: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 2008, 3(10):1-13.
  • [65]McClintock B: The significance of responses of the genome to challenge. Science 1984, 226:792-801.
  • [66]Buggs RJA, Chamala S, Wu W, Gao L, May GD, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB: Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Mol Ecol 2010, 19:132-146.
  • [67]Matyasek R, Tate J, Lim Y, Srubarova H, Koh J, Leitch A, Soltis D, Soltis P, Kovarik A: Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 2007, 176:2509-2519.
  • [68]Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS: Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 2005, 169(2):931-944.
  • [69]Buggs RJA, Zhang LJ, Miles N, Tate JA, Gao L, Wei W, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE: Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Current Biology 2011, 21(7):551-556.
  • [70]Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 1987, 19:11-15.
  • [71]Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ: Identification and resolution of artifacts in bisulfite sequencing. Methods 2002, 27(2):101-107.
  • [72]Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA: An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 1995, 23(6):1087-1088.
  文献评价指标  
  下载次数:15次 浏览次数:9次