期刊论文详细信息
BMC Complementary and Alternative Medicine
Oridonin alters the expression profiles of MicroRNAs in BxPC-3 human pancreatic cancer cells
Jian Xu3  Bin Xu2  Xing Liu1  Shuquan Li3  Zhifang Gui3 
[1] School of Medicine, Jinggangshan University, Ji’an 343000, China;Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;Medical Technology College, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, China
关键词: BxPC-3 pancreatic cancer cell;    microarray;    miRNA;    Oridonin;   
Others  :  1172046
DOI  :  10.1186/s12906-015-0640-5
 received in 2014-09-30, accepted in 2015-03-30,  发布年份 2015
PDF
【 摘 要 】

Background

Oridonin, an ingredient used in traditional Chinese medicine, has been demonstrated to play an important role in antitumour effects, but the mechanism underlying its antitumour properties is still not clear.

Methods

To verify the anti-cancer effects of oridonin via a miRNA-dependent mechanism, comprehensive miRNA expression profiling of oridonin-treated BxPC-3 human pancreatic cancer cells was performed using a miRNA microarray assay based on Sanger miR-Base Release 20, followed by a validation using real-time PCR. MicroRNA target prediction and Gene Ontology and KEGG pathway analysis were performed to investigate possible pathways involved.

Results

The results showed that 105 miRNAs were significantly differentially expressed (signal reading >500, p ≤ 0.01, |Log2-value| ≥1) in oridonin-treated BxPC-3 human pancreatic cancer cells.

Conclusions

Our data indicates that oridonin inhibits BxPC-3 cells probably through regulating the expression of miRNAs. Interruption of miRNA profiling may provide new therapeutic methods for the clinical treatment of pancreatic cancer.

【 授权许可】

   
2015 Gui et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150421011402230.pdf 634KB PDF download
Figure 2. 12KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Ikezoe T, Chen SS, Tong X-J, Heber D, Taguchi H, Koeffler HP. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol. 2003; 23(4):1187-93.
  • [2]Wang S, Zhong Z, Wan J, Tan W, Wu G, Chen M et al.. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med. 2013; 41(01):177-96.
  • [3]Chen RY, Xu B, Chen SF, Chen SS, Zhang T, Ren J, Xu J. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol. 2014; 20(40):14895-14903.
  • [4]Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):215-33.
  • [5]Tsuchiya S, Okuno Y, Tsujimoto G. MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. J Pharmacol Sci. 2006; 101(4):267-70.
  • [6]Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007; 6(1):60. BioMed Central Full Text
  • [7]Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al.. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438(7068):685-9.
  • [8]Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al.. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005; 102(50):18081-6.
  • [9]Zhu Q, Hong A, Sheng N, Zhang X, Matejko A, Jun KY et al.. microParaflo biochip for nucleic acid and protein analysis. Methods Mol Biol. 2007; 382:287-312.
  • [10]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8.
  • [11]Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010; 10(8):748-57.
  • [12]Ohuchida K, Mizumoto K, Lin C, Yamaguchi H, Ohtsuka T, Sato N et al.. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol. 2012; 19(7):2394-402.
  • [13]Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT et al.. Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. Transl Oncol. 2010; 3(2):109-13.
  • [14]Zhang XJ, Ye H, Zeng CW, He B, Zhang H, Chen YQ. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol. 2010; 3:46. BioMed Central Full Text
  • [15]Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N et al.. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. 2009; 9(3):293-301.
  • [16]Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q et al.. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg. 2009; 33(4):698-709.
  • [17]Song S, Zhou J, He S, Zhu D, Zhang Z, Zhao H et al.. Expression levels of microRNA-375 in pancreatic cancer. Biomedical Rep. 2013; 1(3):393-8.
  • [18]Hao J, Zhang S, Zhou Y, Hu X, Shao C. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 2011; 585(1):207-13.
  • [19]Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg. 2008; 12(12):2171-6.
  • [20]Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T et al.. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther. 2009; 8(5):1067-74.
  • [21]Li Y, Vandenboom TG, Wang Z, Kong D, Ali S, Philip PA et al.. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010; 70(4):1486-95.
  • [22]Wu K, Hu G, He X, Zhou P, Li J, He B et al.. MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol Oncol Res. 2013; 19(4):739-48.
  • [23]Torrisani J, Bournet B, du Rieu MC, Bouisson M, Souque A, Escourrou J et al.. let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum Gene Ther. 2009; 20(8):831-44.
  • [24]Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J et al.. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res. 2012; 10(1):3-10.
  • [25]Park JK, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR et al.. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun. 2011; 406(4):518-23.
  • [26]Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W et al.. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010; 70(14):6015-25.
  • [27]Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis. 2010; 31(10):1726-33.
  • [28]Hanoun N, Delpu Y, Suriawinata AA, Bournet B, Bureau C, Selves J et al.. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem. 2010; 56(7):1107-18.
  • [29]Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011; 6(8):e24099.
  • [30]Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A et al.. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007; 26(30):4442-52.
  • [31]Gao W, Gu Y, Li Z, Cai H, Peng Q, Tu M et al.. miR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene. 2015; 34(13):1629-1640.
  • [32]Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008; 7(3):464-73.
  • [33]Bae S, Lee EM, Cha HJ, Kim K, Yoon Y, Lee H et al.. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol Cells. 2011; 32(3):243-9.
  • [34]Li H, Hui L, Xu W, Shen H, Chen Q, Long L et al.. Triptolide modulates the sensitivity of K562/A02 cells to adriamycin by regulating miR-21 expression. Pharm Biol. 2012; 50(10):1233-40.
  • [35]Bu HQ, Liu DL, Wei WT, Chen L, Huang H, Li Y et al.. Oridonin induces apoptosis in SW1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 MAPK. Oncol Rep. 2014; 31(2):975-82.
  • [36]Bu HQ, Luo J, Chen H, Zhang JH, Li HH, Guo HC et al.. Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway. Int J Oncol. 2012; 41(3):949-58.
  • [37]Qi X, Zhang D, Xu X, Feng F, Ren G, Chu Q et al.. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. Int J Nanomedicine. 2012; 7:1793-804.
  • [38]Josson S, Gururajan M, Hu P, Shao C, Chu GC, Zhau HE et al.. miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res. 2014; 20(17):4636–46.
  • [39]Xu X, Chen H, Lin Y, Hu Z, Mao Y, Wu J et al.. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells. 2013; 36(1):62-8.
  • [40]Li C, Nie H, Wang M, Su L, Li J, Yu B et al.. MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett. 2012; 320(2):189-97.
  • [41]Xu B, Shen W, Liu X, Zhang T, Ren J, Fan Y et al.. Oridonin inhibits BxPC-3 cell growth through cell apoptosis. Acta Biochim Biophys Sin. 2015; 47(3):164-73.
  文献评价指标  
  下载次数:18次 浏览次数:17次