期刊论文详细信息
BMC Evolutionary Biology
Intra-genomic variation in symbiotic dinoflagellates: recent divergence or recombination between lineages?
Simon K Davy1  Madeleine JH van Oppen2  Paul L Fisher1  Shaun P Wilkinson1 
[1] School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand;Australian Institute of Marine Science, PMB No. 3, Townsville 4810, QL, Australia
关键词: Recombination;    Sexual reproduction;    Concerted evolution;    ITS2;    Pocillopora damicornis;    Symbiosis;    Symbiodinium;    Coral;   
Others  :  1158256
DOI  :  10.1186/s12862-015-0325-1
 received in 2014-12-01, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Background

The symbiosis between corals and the dinoflagellate alga Symbiodinium is essential for the development and survival of coral reefs. Yet this fragile association is highly vulnerable to environmental disturbance. A coral’s ability to tolerate temperature stress depends on the fitness of its resident symbionts, whose thermal optima vary extensively between lineages. However, the in hospite population genetic structure of Symbiodinium is poorly understood and mostly based on analysis of bulk DNA extracted from thousands to millions of cells. Using quantitative single-cell PCR, we enumerated DNA polymorphisms in the symbionts of the reef-building coral Pocillopora damicornis, and applied a model selection approach to explore the potential for recombination between coexisting Symbiodinium populations.

Results

Two distinct Symbiodinium ITS2 sequences (denoted C100 and C109) were retrieved from all P. damicornis colonies analysed. However, the symbiont assemblage consisted of three distinct Symbiodinium populations: cells featuring pure arrays of ITS2 type C109, near-homogeneous cells of type C100 (with trace ITS2 copies of type C109), and those with co-dominant C100 and C109 ITS2 repeats. The symbiont consortia of some colonies consisted almost entirely of these putative C100 × C109 recombinants.

Conclusions

Our results are consistent with the occurrence of sexual recombination between Symbiodinium types C100 and C109. While the multiple-copy nature of the ITS2 dictates that the observed pattern of intra-genomic co-dominance may be a result of incomplete concerted evolution of intra-genomic polymorphisms, this is a less likely explanation given the occurrence of homogeneous cells of the C109 type. Conclusive evidence for inter-lineage recombination and introgression in this genus will require either direct observational evidence or a single-cell genotyping approach targeting multiple, single-copy loci.

【 授权许可】

   
2015 Wilkinson et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150408010712539.pdf 1017KB PDF download
Figure 4. 73KB Image download
Figure 3. 19KB Image download
Figure 2. 41KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Davy SK, Allemand D, Weis VM: Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 2012, 76:229-261.
  • [2]Pochon X, Gates RD: A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 2010, 56:492-497.
  • [3]Rowan R: Thermal adaptation in reef coral symbiosis. Nature 2004, 430:742.
  • [4]Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S: Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 2007, 16:3721-3733.
  • [5]Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O: Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci U S A 2008, 105:10444-10449.
  • [6]Berkelmans R, van Oppen MJH: The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B 2006, 273:2305-2312.
  • [7]Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, et al.: Climate change, human impacts, and the resilience of coral reefs. Science 2003, 301:929-933.
  • [8]Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al.: Coral reefs under rapid climate change and ocean acidification. Science 2007, 318:1737-1742.
  • [9]Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, et al.: One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 2008, 321:560-563.
  • [10]Baker AC, Starger CJ, McClanahan TR, Glynn PW: Corals’ adaptive response to climate change. Nature 2004, 430:741.
  • [11]Coffroth MA, Poland DM, Petrou EL, Brazeau DA, Holmberg JC: Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS One 2010, 5:e13258.
  • [12]Rowan R, Knowlton N, Baker A, Jara J: Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 1997, 388:265-269.
  • [13]Baker AC: Reef corals bleach to survive change. Nature 2001, 411:765-766.
  • [14]Buddemeier RW, Fautin DG: Coral bleaching as an adaptive mechanism. Bioscience 1993, 43:320-326.
  • [15]Stat M, Gates RD: Clade D Symbiodinium in scleractinian corals: A “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011, 2011:730715.
  • [16]Stat M, Carter D, Hoegh-Guldberg O: The evolutionary history of Symbiodinium and scleractinian hosts— Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 2006, 8:23-43.
  • [17]Putnam HM, Stat M, Pochon X, Gates RD: Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B 2012, 279:4352-4361.
  • [18]Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, et al.: Near-term climate change: projections and predictability. In Clim Chang 2013 Phys Sci Basis Contrib Work Gr I to Fifth Assess Rep Intergov Panel Clim Chang. Edited by Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley P. Cambridge University Press, Cambridge; 2013.
  • [19]LaJeunesse TC: “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 2005, 22:570-581.
  • [20]Correa AMS, Baker AC: Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 2009, 28:81-93.
  • [21]van Oppen MJH, Souter P, Howells EJ, Heyward A, Berkelmans R: Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 2011, 3:405-423.
  • [22]Baillie BK, Belda-Baillie CA, Silvestre V, Sison M, Gomez AV, Gomez ED, et al.: Genetic variation in Symbiodinium isolates from giant clams based on random-amplified-polymorphic DNA (RAPD) patterns. Mar Biol 2000, 136:829-836.
  • [23]Baillie BK, Monje V, Silvestre V, Sison M, Belda-Baillie CA: Allozyme electrophoresis as a tool for distinguishing different zooxanthellae symbiotic with giant clams. Proc R Soc London B 1998, 265:1949-1956.
  • [24]LaJeunesse TC: Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 2001, 37:866-880.
  • [25]Tibayrenc M, Kjellberg F, Arnaud J, Oury B, Frédérique Brenière S, Dardé M-L, et al.: Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proc Natl Acad Sci U S A 1991, 88:5129-5133.
  • [26]Santos SR, Gutiérrez-Rodríguez C, Lasker HR, Coffroth MA: Symbiodinium sp. associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 2003, 143:111-120.
  • [27]Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC: Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 2013, 68:352-367.
  • [28]Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC: Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 2011, 20:5197-5212.
  • [29]Baums IB, Devlin-Durante MK, LaJeunesse TC: New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 2014, 17:4203-15.
  • [30]LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA: Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 2014, 53:305-319.
  • [31]Chi J, Parrow MW, Dunthorn M: Cryptic sex in Symbiodinium (Alveolata, Dinoflagellata) is supported by an inventory of meiotic genes. J Eukaryot Microbiol 2014, 61:322-327.
  • [32]Mieog JC, van Oppen MJH, Berkelmans R, Stam WT, Olsen JL: Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol Ecol Resour 2009, 9:74-82.
  • [33]Santos SR, Gutierrez-Rodriguez C, Coffroth MA: Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)–ribosomal DNA sequences. Mar Biotechnol 2003, 5:130-140.
  • [34]Takabayashi M, Santos SR, Cook CB: Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 2004, 40:160-164.
  • [35]Moore RB: Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int J Syst Evol Microbiol 2003, 53:1725-1734.
  • [36]Tonk L, Bongaerts P, Sampayo EM, Hoegh-Guldberg O: SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecol 2013, 13:7. BioMed Central Full Text
  • [37]van Oppen MJH, Gates RD: Conservation genetics and the resilience of reef-building corals. Mol Ecol 2006, 15:3863-3883.
  • [38]Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth M-A, Vaulot D, et al.: Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One 2012, 7:e42780.
  • [39]Coleman AW: Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol Phylogenet Evol 2009, 50:197-203.
  • [40]Song J, Shi L, Li D, Sun Y, Niu Y, Chen Z, et al.: Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS One 2012, 7:e43971.
  • [41]Wolf M, Chen S, Song J, Ankenbrand M, Müller T: Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences - a proof of concept. PLoS One 2013, 8:e66726.
  • [42]Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al.: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 2010, 5:e8613.
  • [43]Rybalka N, Wolf M, Andersen RA, Friedl T: Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae). BMC Evol Biol 2013, 13:39. BioMed Central Full Text
  • [44]Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ: The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 1995, 82:247-277.
  • [45]Álvarez I, Wendel JF: Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 2003, 29:417-434.
  • [46]Thornhill DJ, LaJeunesse TC, Santos SR: Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 2007, 16:5326-5340.
  • [47]Miranda LN, Zhuang Y, Zhang H, Lin S: Phylogenetic analysis guided by intragenomic SSU rDNA polymorphism refines classification of “Alexandrium tamarense” species complex. Harmful Algae 2012, 16:35-48.
  • [48]Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, et al.: Phylogenetic analyses indicate that the 19’hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 2000, 17:718-729.
  • [49]Edvardsen B, Shalchian-Tabrizi K, Jakobsen KS, Medlin LK, Dahl E, Brubak S, et al.: Genetic variability and molecular phylogeny of Dinophysis species (Dinophyceae) from Norwegian waters inferred from single cell analyses of rDNA. J Phycol 2003, 39:395-408.
  • [50]Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, et al.: Molecular delineation of species in the coral holobiont. In Adv Mar Biol Vol 63. Edited by Lesser MP. Academic Press, Amsterdam; 2012:1-65.
  • [51]Brosnahan ML, Kulis DM, Solow AR, Erdner DL, Percy L, Lewis J, et al.: Outbreeding lethality between toxic Group I and nontoxic Group III Alexandrium tamarense spp. isolates: Predominance of heterotypic encystment and implications for mating interactions and biogeography. Deep Sea Res Part II Top Stud Oceanogr 2010, 57:175-189.
  • [52]Harriott VJ, Harrison PL, Banks SA: The coral communities of Lord Howe Island. Mar Freshw Res 1995, 46:457-465.
  • [53]Wicks LC, Sampayo EM, Gardner JPA, Davy SK: Local endemicity and high diversity characterise high-latitude coral–Symbiodinium partnerships. Coral Reefs 2010, 29:989-1003.
  • [54]Veron JEN. Corals of the World. Townsville: Australian Institute of Marine Science; 2000.
  • [55]Combosch DJ, Vollmer SV: Mixed asexual and sexual reproduction in the Indo-Pacific reef coral Pocillopora damicornis. Ecol Evol 2013, 3:3379-3387.
  • [56]Miller KJ, Ayre DJ: The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 2004, 92:557-568.
  • [57]Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ: The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 2006, 37:489-517.
  • [58]LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK: Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 2003, 48:2046-2054.
  • [59]LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, et al.: Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 2004, 284:147-161.
  • [60]Ulstrup KE, Hill R, van Oppen MJH, Larkum AWD, Ralph PJ: Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals. Mar Ecol Prog Ser 2008, 361:139-150.
  • [61]Stat M, Loh WKW, Hoegh-Guldberg O, Carter DA: Symbiont acquisition strategy drives host–symbiont associations in the southern Great Barrier Reef. Coral Reefs 2008, 27:763-772.
  • [62]Silverstein RN, Correa AMS, LaJeunesse TC, Baker AC: Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar Ecol Prog Ser 2011, 422:63-75.
  • [63]Seutin G, White BN, Boag PT: Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 1991, 69:82-90.
  • [64]LaJeunesse TC: Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 2002, 141:387-400.
  • [65]Stat M, Pochon X, Cowie ROM, Gates RD: Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 2009, 386:83-96.
  • [66]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [67]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [68]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2011.
  • [69]Burnham KP, Anderson DR: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd Edition). Springer, New York; 2002.
  • [70]Johnson JB, Omland KS: Model selection in ecology and evolution. Trends Ecol Evol 2004, 19:101-108.
  • [71]Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE: Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 2007, 212:259-268.
  • [72]Ulstrup KE, van Oppen MJH: Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 2003, 12:3477-3484.
  • [73]Cunning R, Glynn PW, Baker AC: Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species. Coral Reefs 2013, 32:795-801.
  • [74]Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL: Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 2007, 26:449-457.
  • [75]Yamashita H, Suzuki G, Hayashibara T, Koike K: Do corals select zooxanthellae by alternative discharge? Mar Biol 2010, 158:87-100.
  • [76]Correa AMS, McDonald MD, Baker AC: Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol 2009, 156:2403-2411.
  • [77]Wendel JF, Schnabel A, Seelanan T: Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A 1995, 92:280-284.
  • [78]Ganley ARD, Scott B: Concerted evolution in the ribosomal RNA genes of an Epichloë endophyte hybrid: comparison between tandemly arranged rDNA and dispersed 5S rrn genes. Fungal Genet Biol 2002, 35:39-51.
  • [79]Barton NH: The role of hybridization in evolution. Mol Ecol 2001, 10:551-568.
  • [80]Demuth JP, Wade MJ: On the theoretical and empirical framework for studying genetic interactions within and among species. Am Nat 2005, 165:524-536.
  • [81]Dover G: Molecular drive: a cohesive mode of species evolution. Nature 1982, 299:111-117.
  • [82]Barton N, Bengtsson BO: The barrier to genetic exchange between hybridising populations. Heredity 1986, 57:357-376.
  • [83]Arnold ML: Evolution through Genetic Exchange. Oxford University Press, Oxford; 2007.
  • [84]Arnold ML, Martin NH: Hybrid fitness across time and habitats. Trends Ecol Evol 2010, 25:530-536.
  • [85]Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, et al.: Major ecological transitions in wild sunflowers facilitated by hybridization. Science 2003, 301:1211-1216.
  • [86]Epifanio JM, Phillipp DP: Sources for misclassifying genealogical origins in mixed hybrid populations. J Hered 1997, 88:62-65.
  • [87]Fitzpatrick BM: Estimating ancestry and heterozygosity of hybrids using molecular markers. BMC Evol Biol 2012, 12:131. BioMed Central Full Text
  文献评价指标  
  下载次数:24次 浏览次数:7次