期刊论文详细信息
BMC Genomics
Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments
Agostinho Antunes3  Warren E Johnson1  Stephen J O’Brien2  Vítor Vasconcelos3  Emanuel Maldonado4  Imran Khan3 
[1] Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Rd, Front Royal, VA 22630, USA;Oceanographic Center 8000 N. Ocean Drive, Nova Southeastern University, Ft Lauderdale, Florida 33004, USA;Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
关键词: Positive selection;    Recombination;    Gene conversion;    Hair;    Keratin;    Keratin Associated Proteins;    Gene family;    Concerted evolution;   
Others  :  1140645
DOI  :  10.1186/1471-2164-15-779
 received in 2014-02-19, accepted in 2014-07-30,  发布年份 2014
PDF
【 摘 要 】

Background

Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation.

Results

We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the “hairless” dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair.

Conclusions

We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.

【 授权许可】

   
2014 Khan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325074446526.pdf 2441KB PDF download
Figure 7. 61KB Image download
Figure 6. 85KB Image download
Figure 5. 92KB Image download
Figure 4. 82KB Image download
Figure 3. 92KB Image download
Figure 2. 141KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Alibardi L: Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. Biologia 2003, 41:12-41. doi:10.1002/jez.b.00024
  • [2]Chuong C-M, Homberger DG: Development and evolution of the amniote integument: current landscape and future horizon. J Exp Zool B Mol Dev Evol 2003, 298:1-11. doi:10.1002/jez.b.23
  • [3]George RD, McVicker G, Diederich R, Ng SB, MacKenzie AP, Swanson WJ, Shendure J, Thomas JH: Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res 2011, 21:1686-1694. doi:10.1101/gr.121327.111
  • [4]Sun Y-B, Zhou W-P, Liu H-Q, Irwin DM, Shen Y-Y, Zhang Y-P: Genome-Wide Scans for Candidate Genes Involved to the Aquatic Adaptation of Dolphins. Genome Biol Evol 2012. 10.1093/gbe/evs123 Available: http://gbe.oxfordjournals.org/content/5/1/130 webcite.
  • [5]Alibardi L, Valle LD, Nardi A, Toni M: Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes. J Anat 2009, 214:560-586. doi:10.1111/j.1469-7580.2009.01045.x
  • [6]Alibardi L: Embryonic keratinization in vertebrates in relation to land colonization. Acta Zoologica 2009, 90:1-17. doi:10.1111/j.1463-6395.2008.00327.x
  • [7]Rogers MA, Winter H, Langbein L, Wollschläger A, Praetzel-Wunder S, Jave-Suarez LF, Schweizer J: Characterization of human KAP24.1, a cuticular hair keratin-associated protein with unusual amino-acid composition and repeat structure. J Invest Dermatol 2007, 127:1197-1204. 10.1038/sj.jid.5700702
  • [8]Zimek A, Weber K: Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish. Eur J Cell Biol 2005, 84:623-635. doi:10.1016/j.ejcb.2005.01.007
  • [9]Alibardi L: Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. Int Rev Cytol 2006, 253:177-259. doi:10.1016/S0074-7696(06)53005-0
  • [10]Alibardi L, Jaeger K, Valle LD, Eckhart L: Ultrastructural localization of hair keratin homologs in the claw of the lizard Anolis carolinensis. J Morphol 2011, 272:363-370. doi:10.1002/jmor.10920
  • [11]Vandebergh W, Bossuyt F: Radiation and functional diversification of alpha keratins during early vertebrate evolution. Mol Biol Evol 2011., 2011doi:10.1093/molbev/msr269
  • [12]Eckhart L, Valle LD, Jaeger K, Ballaun C, Szabo S, Nardi A, Buchberger M, Hermann M, Alibardi L, Tschachler E: Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proc Natl Acad Sci U S A 2008, 105:18419-18423. doi:10.1073/pnas.0805154105
  • [13]Hesse M, Zimek A, Weber K, Magin TM: Comprehensive analysis of keratin gene clusters in humans and rodents. Eur J Cell Biol 2004, 83:19-26.
  • [14]Wu D-D, Irwin DM, Zhang Y-P: Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol Biol 2008, 8:241. doi:10.1186/1471-2148-8-241 BioMed Central Full Text
  • [15]Alibardi L: Fine structure of marsupial hairs, with emphasis on trichohyalin and the structure of the inner root sheath. J Morphol 2004, 261:390-402. doi:10.1002/jmor.10257
  • [16]Botchkarev VA, Paus R: Molecular biology of hair morphogenesis: development and cycling. J Exp Zool B Mol Dev Evol 2003, 298:164-180. doi:10.1002/jez.b.33
  • [17]Millar SE: Molecular Mechanisms Regulating Hair Follicle Development. J Invest Dermatol 2002, 118:216-225.
  • [18]Schneider MR, Schmidt-Ullrich R, Paus R: The hair follicle as a dynamic miniorgan. Curr Biol 2009, 19:R132-R142. doi:10.1016/j.cub.2008.12.005
  • [19]Hardy MH: The secret life of the hair follicle. Trends Genet 1992, 8:55-61. 16/0168-9525(92)90350-D
  • [20]Franbourg A, Hallegot P, Baltenneck F, Toutaina C, Leroy F: Current research on ethnic hair. J Am Acad Dermatol 2003, 48:S115-S119. doi:10.1067/mjd.2003.277
  • [21]Sahajpal V, Goyal S, Singh K, Thakur V: Dealing Wildlife Offences in India: Role of the Hair as Physical Evidence. Int J Trichology 2009, 1:18-26. doi:10.4103/0974-7753.51928
  • [22]Bahuguna A, Mukherjee SK: Use of SEM to recognise Tibetan antelope (Chiru) hair and blending in wool products. Sci Justice 2000, 40:177-182. doi:10.1016/S1355-0306(00)71973-3
  • [23]Jenkins BJ, Powell BC: Differential expression of genes encoding a cysteine-rich keratin family in the hair cuticle. J Invest Dermatol 1994, 103:310-317.
  • [24]Shimomura Y, Aoki N, Rogers MA, Langbein L, Schweizer J, Ito M: hKAP1.6 and hKAP1.7, two novel human high sulfur keratin-associated proteins are expressed in the hair follicle cortex. J Invest Dermatol 2002, 118:226-231.
  • [25]Rogers MA, Langbein L, Praetzel-Wunder S, Giehl K: Characterization and expression analysis of the hair keratin associated protein KAP26.1. Br J Dermatol 2008, 159:725-729.
  • [26]Rogers MA, Langbein L, Winter H, Ehmann C, Praetzel S, Schweizer J: Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. J Biol Chem 2002, 277:48993-49002.
  • [27]Powell BC, Arthur J, Nesci A: Characterization of a gene encoding a cysteine-rich keratin associated protein synthesized late in rabbit hair follicle differentiation. Differentiation 1995, 58:227-232. doi:10.1046/j.1432-0436.1995.5830227.x
  • [28]Pruett ND, Tkatchenko TV, Jave-Suarez L, Jacobs DF, Potter CS, Tkatchenko AV, Schweizer J, Awgulewitsch A: Krtap16, characterization of a new hair keratin-associated protein (KAP) gene complex on mouse chromosome 16 and evidence for regulation by Hoxc13. J Biol Chem 2004, 279:51524-51533. doi:10.1074/jbc.M404331200
  • [29]Stenn KS, Paus R: Controls of hair follicle cycling. Physiol Rev 2001, 81:449-494.
  • [30]Rogers GE: Hair follicle differentiation and regulation. Int J Dev Biol 2004, 48:163-170. doi:10.1387/ijdb.021587gr
  • [31]Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DD, Rogers MA, Wright MW: New consensus nomenclature for mammalian keratins. J Cell Biol 2006, 174:169-174. doi:10.1083/jcb.200603161
  • [32]Rogers M, Winter H, Langbein L, Bleiler R: The human type I keratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21. 2 gene domain. Differentiation 2004, 72:527-540. doi:10.1111/j.1432-0436.2004.07209006.x
  • [33]Rogers MA, Edler L, Winter H, Langbein L, Beckmann I, Schweizer J: Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13. J Invest Dermatol 2005, 124:536-544.
  • [34]Rogers MA, Winter H, Wolf C, Heck M, Schweizer J: Characterization of a 190-kilobase pair domain of human type i hair keratin genes. J Biol Chem 1998, 273:26683-26691. doi:10.1074/jbc.273.41.26683
  • [35]Rogers MA, Winter H, Langbein L, Wolf C, Schweizer J: Characterization of a 300 kbp region of human DNA containing the type II hair keratin gene domain. J Invest Dermatol 2000, 114:464-472. doi:10.1046/j.1523-1747.2000.00910.x
  • [36]Steinert PM, North AC, Parry DA: Structural features of keratin intermediate filaments. J Invest Dermatol 1994, 103:19S-24S.
  • [37]Powell BC, Nesci A, Rogers GE: Regulation of keratin gene expression in hair follicle differentiation. Ann N Y Acad Sci 1991, 642:1-20.
  • [38]Powell BC, Rogers GE: The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997, 78:59-148.
  • [39]Fujikawa H, Fujimoto A, Farooq M, Ito M, Shimomura Y: Characterization of the Human Hair Keratin–Associated Protein 2 (KRTAP2) Gene Family. J Invest Dermatol 2012, 132:1806-1813. doi:10.1038/jid.2012.73
  • [40]Shimomura Y, Ito M: Human hair keratin-associated proteins. J Invest Dermatol Symp Proc Soc Invest Dermatol Inc Eur Soc Dermatol Res 2005, 10:230-233. doi:10.1111/j.1087-0024.2005.10112.x
  • [41]Lee YJ, Rice RH, Lee YM: Proteome analysis of human hair shaft: from protein identification to posttranslational modification. Mol Cell Proteomics 2006, 5:789-800. doi:10.1074/mcp.M500278-MCP200
  • [42]Koehn H, Clerens S, Deb-Choudhury S, Morton JD, Dyer JM, Plowman JE: The proteome of the wool cuticle. J Proteome Res 2010, 9:2920-2928. doi:10.1021/pr901106m
  • [43]Rogers MA, Langbein L, Winter H, Ehmann C, Praetzel S, Korn B, Schweizer J: Characterization of a cluster of human high/ultrahigh sulfur keratin-associated protein genes embedded in the type I keratin gene domain on chromosome 17q12-21. J Biol Chem 2001, 276:19440-19451. doi:10.1074/jbc.M100657200
  • [44]Rogers MA, Langbein L, Winter H, Beckmann I, Praetzel S, Schweizer J: Hair keratin associated proteins: characterization of a second high sulfur KAP gene domain on human chromosome 21. J Invest Dermatol 2004, 122:147-158. doi:10.1046/j.0022-202×.2003.22128.x
  • [45]Shibuya K, Obayashi I, Asakawa S, Minoshima S, Kudoh J, Shimizu N: A cluster of 21 keratin-associated protein genes within introns of another gene on human chromosome 21q22.3. Genomics 2004, 83:679-693.
  • [46]Yahagi S, Shibuya K, Obayashi I, Masaki H, Kurata Y, Kudoh J, Shimizu N: Identification of two novel clusters of ultrahigh-sulfur keratin-associated protein genes on human chromosome 11. Biochem Biophys Res Commun 2004, 318:655-664. doi:10.1016/j.bbrc.2004.04.074
  • [47]Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD: Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 2007, 7:187. doi:10.1186/1471-2148-7-187 BioMed Central Full Text
  • [48]Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002, 1048-1059. doi:10.1101/gr.174302.eages
  • [49]Leister D: Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet 2004, 20:116-122.
  • [50]Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol 2003, 18:292-298. doi:16/S0169-5347(03)00033-8
  • [51]Lynch M, Force A: The probability of duplicate gene preservation by subfunctionalization. Genetics 2000, 154:459-473.
  • [52]Ensembl Genome Browser http://www.ensembl.org/index.html webcite
  • [53]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Denise C-S, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, et al.: Ensembl 2012. Nucl Acids Res 2011. doi:10.1093/nar/gkr991 Available: http://nar.oxfordjournals.org/content/40/D1/D84 webcite.
  • [54]Map Viewer - National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/mapview/ webcite
  • [55]Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature 2007, 446:507-512. doi:10.1038/nature05634
  • [56]Walsh JB, Stephan W: Multigene Families: Evolution. Encyclopedia Life Sci 2001, 1-6. http://nitro.biosci.arizona.edu/zdownload/papers/ELSGenFamily.pdf webcite
  • [57]McLaren RJ, Rogers GR, Davies KP, Maddox JF, Montgomery GW: Linkage mapping of wool keratin and keratin-associated protein genes in sheep. Mamm Genome 1997, 8:938-940.
  • [58]Warren WC, Hillier LW, Graves JAM, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang S-P, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, et al.: Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008, 453:175-183.
  • [59]Suutari M, Majaneva M, Fewer DP, Voirin B, Aiello A, Friedl T, Chiarello AG, Blomster J: Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evol Biol 2010, 10:86. doi:10.1186/1471-2148-10-86 BioMed Central Full Text
  • [60]Palmer E, Weddell G: The Relationship between structure, innervation and function of the skin of the bottle nose dolphin (Tursiops truncatus). Proc Zool Soc London 1964, 143:553-568. doi:10.1111/j.1469-7998.1964.tb03881.x
  • [61]Meyer W, Schmidt J, Busche R, Jacob R, Naim HY: Demonstration of free fatty acids in the integument of semi-aquatic and aquatic mammals. Acta Histochem 2012, 114:145-150. doi:10.1016/j.acthis.2011.03.011
  • [62]Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W: Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc B 2012. 2011, doi:10.1098/rspb.2011.1127 Available: http://rspb.royalsocietypublishing.org/content/early/2011/07/21/rspb.2011.1127.Accessed webcite 23 July
  • [63]Mauck B, Eysel U, Dehnhardt G: Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guianensis). J Exp Biol 2000, 203:2125-2131.
  • [64]Jenkins J: “Tursiops truncatus” (On-line), animal diversity web. 2009. Accessed July 23, 2012 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Tursiops_truncatus.html webcite
  • [65]Thewissen JGM, Cooper LN, George JC, Bajpai S: From land to water: the origin of whales, dolphins, and porpoises. Evol Educ Outreach 2009, 2:272-288. doi:10.1007/s12052-009-0135-2
  • [66]Fish FE, Hui CA: Dolphin swimming–a review. Mammal Rev 1991, 21:181-195. doi:10.1111/j.1365-2907.1991.tb00292.x
  • [67]Hicks BD, Aubin DJS, Geraci JR, Brown WR: Epidermal growth in the Bottlenose Dolphin, Tursiops truncatus. J Invest Dermatol 1985, 85:60-63. doi:10.1111/1523-1747.ep12275348
  • [68]Brown TA: Genomes. In How Genomes Evolve.NCBI Bookshelf. Chapter 15. Oxford: Wiley-Liss; Available: http://www.ncbi.nlm.nih.gov/books/NBK21112/ webcite
  • [69]Kostka D, Hubisz MJ, Siepel A, Pollard KS: The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol Biol Evol 2012, 29(3):1047-1057. doi:10.1093/molbev/msr279. Epub 2011 Nov 10
  • [70]Duret L, Arndt PF: The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 2008, 4:e1000071. doi:10.1371/journal.pgen.1000071
  • [71]Escobar JS, Glémin S, Galtier N: GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes. Mol Biol Evol 2011, 28:2561-2575. doi:10.1093/molbev/msr079
  • [72]Galtier N, Duret L: Adaptation or biased gene conversion? extending the null hypothesis of molecular evolution. Trends Genet 2007, 23:273-277. doi:10.1016/j.tig.2007.03.011
  • [73]Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM: Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res 2004, 14:354-366. doi:10.1101/gr.2133704
  • [74]Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 6:526-538.
  • [75]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26:2462-2463. doi:10.1093/bioinformatics/btq467
  • [76]Han MV, Demuth JP, Mcgrath CL, Casola C, Hahn MW: Adaptive evolution of young gene duplicates in mammals. Genome Res 2009, 19(5):859-867. doi: 10.1101/gr.085951.108
  • [77]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591. doi:10.1093/molbev/msm088
  • [78]Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 1998, 15:568-573.
  • [79]Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 1998, 148:929-936.
  • [80]Anisimova M, Nielsen R, Yang Z: Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 2003, 164:1229-1236.
  • [81]Kariya N, Shimomura Y, Ito M: Size polymorphisms in the human ultrahigh sulfur hair keratin-associated protein 4, kap4, gene family. J Invest Dermatol 2005, 124:1111-1118.
  • [82]Parry DD, Smith TA, Rogers MA, Schweizer J: Human hair keratin-associated proteins: sequence regularities and structural implications. J Struct Biol 2006, 155:361-369. doi:10.1016/j.jsb.2006.03.018
  • [83]Rogers M, Schweizer J: Human KAP genes, only the half of it? extensive size polymorphisms in hair keratin-associated protein genes. J Invest Dermatol 2005, 124:vii-ix. doi:10.1111/j.0022-202×.2005.23728.x
  • [84]Gould SJ, Eldredge N: Punctuated equilibrium comes of age. Nature 1993, 366:223-227. 10.1038/366223a0
  • [85]Mattila TM, Bokma F: Extant mammal body masses suggest punctuated equilibrium. Proc Biol Sci 2008, 275:2195-2199. doi:10.1098/rspb.2008.0354
  • [86]Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe J, Lyons J, Kondratova A, Tubbs R, Tanaka H: A common copy number breakpoint of ERBB2 amplification in breast cancer co-localizes with a complex block of segmental duplications. Breast Cancer Res 2012, 14:R150. doi:10.1186/bcr3362 BioMed Central Full Text
  • [87]Gautam P, Jha P, Kumar D, Tyagi S, Varma B, Dash D, Mukhopadhyay A, Mukerji M: Spectrum of large copy number variations in 26 diverse Indian populations: potential involvement in phenotypic diversity. Hum Genet 2012, 131:131-143. doi:10.1007/s00439-011-1050-5
  • [88]Gong H, Zhou H, Yu Z, Dyer J, Plowman JE, Hickford J: Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Exp Dermatol 2011, 20:815-819. doi:10.1111/j.1600-0625.2011.01333.x
  • [89]Gong H, Zhou H, Plowman JE, Dyer JM, Hickford JGH: Analysis of variation in the ovine ultra-high sulphur keratin-associated protein KAP5-4 gene using PCR-SSCP technique. Electrophoresis 2010, 31:3545-3547. doi:10.1002/elps.201000301
  • [90]Gong H, Zhou H, Hickford JGH: Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep. Mol Biol Rep 2011, 38:31-35. doi:10.1007/s11033-010-0074-6
  • [91]Zhou H, Gong H, Yan W, Luo Y, Hickford JGH: Identification and sequence analysis of the keratin-associated protein 24‒1 (KAP24-1) gene homologue in sheep. Gene 2012, 511:62-65. doi:10.1016/j.gene.2012.08.049
  • [92]Yu Z, Gordon SW, Nixon AJ, Bawden CS, Rogers MA, Wildermoth JE, Maqbool NJ, Pearson AJ: Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation 2009, 77:307-316. doi:10.1016/j.diff.2008.10.009
  • [93]Gong H, Zhou H, Dyer JM, Hickford JGH: Identification of the ovine KAP11-1 gene (KRTAP11-1) and genetic variation in its coding sequence. Mol Biol Rep 2011, 38:5429-5433. doi:10.1007/s11033-011-0697-2
  • [94]Parsons YM, Cooper DW, Piper LR: Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fibre diameter in a Merino half-sib family. Anim Genet 1994, 25:105-108.
  • [95]McKenzie GW, Abbott J, Zhou H, Fang Q, Merrick N, Forrest RH, Sedcole JR, Hickford JG: Genetic diversity of selected genes that are potentially economically important in feral sheep of New Zealand. Genet Sel Evol 2010, 42:43. doi:10.1186/1297-9686-42-43 BioMed Central Full Text
  • [96]Purvis IW, Jeffery N: Genetics of fibre production in sheep and goats. Small Ruminant Res 2007, 70:42-47. doi:10.1016/j.smallrumres.2007.01.002
  • [97]Henikoff S: Gene families: the taxonomy of protein paralogs and chimeras. Science 1997, 278:609-614. doi:10.1126/science.278.5338.609
  • [98]Shibuya K, Kudoh J, Obayashi I, Shimizu A, Sasaki T, Minoshima S, Shimizu N: Comparative genomics of the keratin-associated protein (KAP) gene clusters in human, chimpanzee, and baboon. Mamm Genome 2004, 15:179-192. doi:10.1007/s00335-003-2313-9
  • [99]Wu D-D, Irwin DM, Zhang Y-P: Correction: molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol Biol 2009, 9:213. doi:10.1186/1471-2148-9-213 BioMed Central Full Text
  • [100]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410. doi:10.1016/S0022-2836(05)80360-2
  • [101]Tatusova TA, Madden TL: BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 1999, 174:247-250.
  • [102]Pearson WR, Wood T, Zhang Z, Miller W: Comparison of DNA sequences with protein sequences. Genomics 1997, 46:24-36. doi:10.1006/geno.1997.4995
  • [103]Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C: Mobyle: a new full web bioinformatics framework. Bioinformatics 2009, 25:3005-3011. doi:10.1093/bioinformatics/btp493
  • [104]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W : improving the sensitivity of progressive multiple ; sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [105]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
  • [106]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [107]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739. doi:10.1093/molbev/msr121
  文献评价指标  
  下载次数:11次 浏览次数:8次