期刊论文详细信息
BMC Genomics
Network analysis of temporal functionalities of the gut induced by perturbations in new-born piglets
Mari A Smits5  Hauke Smidt6  Vitor AP Martins dos Santos3  Maria Suarez-Diez1  Dirkjan Schokker4  Nirupama Benis2 
[1] Systems and Synthetic biology, Wageningen University, Wageningen, The Netherlands;Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands;Lifeglimmer GmbH, Berlin, Germany;Wageningen UR Livestock Research, Wageningen University, Wageningen, The Netherlands;Central Veterinary Institute, Wageningen University, Wageningen, The Netherlands;Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
关键词: Pig intestine;    Stress;    Antibiotic;    Early life perturbations;    Long-term effects;    Data-integration;    Microbiota;    Gene expression;   
Others  :  1221840
DOI  :  10.1186/s12864-015-1733-8
 received in 2015-02-26, accepted in 2015-06-29,  发布年份 2015
PDF
【 摘 要 】

Background

Evidence is accumulating that perturbation of early life microbial colonization of the gut induces long-lasting adverse health effects in individuals. Understanding the mechanisms behind these effects will facilitate modulation of intestinal health. The objective of this study was to identify biological processes involved in these long lasting effects and the (molecular) factors that regulate them. We used an antibiotic and the same antibiotic in combination with stress on piglets as an early life perturbation. Then we used host gene expression data from the gut (jejunum) tissue and community-scale analysis of gut microbiota from the same location of the gut, at three different time-points to gauge the reaction to the perturbation. We analysed the data by a new combination of existing tools. First, we analysed the data in two dimensions, treatment and time, with quadratic regression analysis. Then we applied network-based data integration approaches to find correlations between host gene expression and the resident microbial species.

Results

The use of a new combination of data analysis tools allowed us to identify significant long-lasting differences in jejunal gene expression patterns resulting from the early life perturbations. In addition, we were able to identify potential key gene regulators (hubs) for these long-lasting effects. Furthermore, data integration also showed that there are a handful of bacterial groups that were associated with temporal changes in gene expression.

Conclusion

The applied systems-biology approach allowed us to take the first steps in unravelling biological processes involved in long lasting effects in the gut due to early life perturbations. The observed data are consistent with the hypothesis that these long lasting effects are due to differences in the programming of the gut immune system as induced by the temporary early life changes in the composition and/or diversity of microbiota in the gut.

【 授权许可】

   
2015 Benis et al.

【 预 览 】
附件列表
Files Size Format View
20150804024547454.pdf 3951KB PDF download
Fig. 4. 197KB Image download
Fig. 3. 31KB Image download
Fig. 2. 181KB Image download
Fig. 1. 51KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Foliaki S, Pearce N, Björkstén B, Mallol J, Montefort S, von Mutius E. Antibiotic use in infancy and symptoms of asthma, rhinoconjunctivitis, and eczema in children 6 and 7 years old: International Study of Asthma and Allergies in Childhood Phase III. J Allergy Clin Immunol. 2009; 124:982-9.
  • [2]Hoskin-Parr L, Teyhan A, Blocker A, Henderson AJW. Antibiotic exposure in the first two years of life and development of asthma and other allergic diseases by 7.5 yr: a dose-dependent relationship. Pediatr Allergy Immunol. 2013; 24:762-71.
  • [3]Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012; 70:S2-9.
  • [4]Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004; 12(3):129-34.
  • [5]O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7:655-746.
  • [6]Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489:242-9.
  • [7]Arrieta M-C, Finlay BB. The commensal microbiota drives immune homeostasis. Front Immunol. 2012; 3:33.
  • [8]Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 2014; 35:507-17.
  • [9]Scholtens PAMJ, Oozeer R, Martin R, Ben AK, Knol J. The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012; 3:425-47.
  • [10]Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012; 2:104.
  • [11]Willing BP, Gill N, Finlay BB. The role of the immune system in regulating the microbiota. Gut Microbes. 2010; 1:213-23.
  • [12]Mantis NJ, Rol N, Corthesy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011; 4:603-11.
  • [13]Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5: Article ID e177
  • [14]Inman CF, Haverson K, Konstantinov SR, Jones PH, Harris C, Smidt H, Miller B, Bailey M, Stokes C. Rearing environment affects development of the immune system in neonates. Clin Exp Immunol. 2010; 160:431-9.
  • [15]Olszak T, An D, Zeissig S, Vera MMP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, Blumberg RS. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012; 336:489-93.
  • [16]Nylund L, Satokari R, Salminen S, de Vos WM. Intestinal microbiota during early life - impact on health and disease. Proc Nutr Soc. 2014; 73(4):457-69.
  • [17]Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol. 2013; 208:249-54.
  • [18]Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013; 4:203-14.
  • [19]Kelly D, Coutts AG. Early nutrition and the development of immune function in the neonate. Proc Nutr Soc. 2000; 59:177-85.
  • [20]Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res. 2007; 61:2-8.
  • [21]Jarillo-Luna A, Rivera-Aguilar V, Garfias HR, Lara-Padilla E, Kormanovsky A, Campos-Rodríguez R. Effect of repeated restraint stress on the levels of intestinal IgA in mice. Psychoneuroendocrinology. 2007; 32:681-92.
  • [22]O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM, Cryan JF, Dinan TG. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009; 65:263-7.
  • [23]Schumann A, Nutten S, Donnicola D, Comelli EM, Mansourian R, Cherbut C, Corthesy-Theulaz I, Garcia-Rodenas C. Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol Genomics. 2005; 23:235-45.
  • [24]Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, Shirakawa T, Sonomoto K, Nakayama J. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009; 56:80-7.
  • [25]Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5.
  • [26]Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012; 488:621-6.
  • [27]Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011; 9:233-43.
  • [28]Niewold TA. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci. 2007; 86(4):605-9.
  • [29]Schokker D, Zhang J, Zhang L, Vastenhouw SA, Heilig HGHJ, Smidt H, Rebel JMJ, Smits MA. Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets. PLoS One. 2014; 9: Article ID e100040
  • [30]Schokker D, Zhang J, Vastenhouw SA, Heilig HG, Smidt H, Rebel JM, et al. Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs. PLoS One. 2015;10.
  • [31]Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991; 12(2):118-34.
  • [32]Mayer EA. The neurobiology of stress and gastrointestinal disease. Gut. 2000; 47:861-9.
  • [33]Braun T, Challis JR, Newnham JP, Sloboda DM. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev. 2013; 34:885-916.
  • [34]Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009; 136:2003-14.
  • [35]Konturek PC, Brzozowski T, Konturek SJ. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011; 62:591-9.
  • [36]Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013; 7:70.
  • [37]Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014; 146:1500-12.
  • [38]Söderholm JD, Perdue MH. Stress and the gastrointestinal tract II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 2001; 280:G7-13.
  • [39]Bhatia V, Tandon RK. Stress and the gastrointestinal tract. J Gastroenterol Hepatol. 2005; 20:332-9.
  • [40]Taché Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: Role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol. 2001; 280:G173-7.
  • [41]Pérez Gutiérrez O, van den Bogert B, Derrien M, Koopmans S, Molenaar D, de Vos WM, Smidt H. Design of a high-throughput diagnostic microarray for the characterization of pig gastrointestinal tract microbiota (chapter 3). Unraveling piglet gut microbiota Dyn response to Feed Addit [dissertation] Wageningen Wageningen Univ. 2010.40-67.
  • [42]Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, van den Borne JJGC, Pérez Gutiérrez O, Smidt H, Kemp B, Müller M, Hooiveld GJEJ. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr. 2013; 143:274-83.
  • [43]Pérez Gutiérrez O. Unraveling piglet gut microbiota dynamics in response to feed additives. [Sl: sn]. 2010.
  • [44]Rajilić-Stojanović M, Heilig HGHJ, Molenaar D, Kajander K, Surakka A, Smidt H, De Vos WM. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol. 2009; 11:1736-51.
  • [45]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013; 41(D1):D991-5.
  • [46]Pig experiment Sterksel early antibiotics/stress. http://www. ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53170 webcite
  • [47]Smyth GK. limma: Linear Models for Microarray Data. In: Bioinformatics and computational biology solutions using R and bioconductor SE - 23. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, editors. Springer, New York; 2005: p.397-420.
  • [48]Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S. Bioinformatics and computational biology solutions using R and bioconductor. Volume 746718470. Springer; 2005.
  • [49]Conesa A, Nueda MJ, Ferrer A, Talón M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006; 22:1096-102.
  • [50]Dopazo J. Functional interpretation of microarray experiments. Omi a J Integr Biol. 2006; 10:398-410.
  • [51]Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO. 2009.
  • [52]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-504.
  • [53]Croft D. Building models using reactome pathways as templates. In: In Silico Systems Biology SE - 14. Schneider MV, editor. Humana Press, New York; 2013: p.273-83.
  • [54]Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D’Eustachio P, Stein L. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel). 2012; 4:1180-211.
  • [55]Wu G, Feng X, Stein L. Research a human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010; 11:R53. BioMed Central Full Text
  • [56]Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006; 103:8577-82.
  • [57]Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinforma. 2008; 24(2):282-4.
  • [58]Lê Cao K-A, González I, Déjean S. integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics. 2009; 25:2855-6.
  • [59]Dejean S, Gonzalez I, Lê Cao K-A, Monget P. mixOmics: Omics data integration project, 2011. R Packag version. 2011.2-9.
  • [60]Yu JJ, Gaffen SL. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci. 2008; 13:170-7.
  • [61]Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL‐12 and IL‐23: master regulators of innate and adaptive immunity. Immunol Rev. 2004; 202:96-105.
  • [62]Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol. 2002; 14:432-6.
  • [63]Pluske JR, Le Dividich J, Verstegen MWA. Weaning the pig: concepts and consequences. Wageningen Academic Pub, Wageningen; 2003.
  • [64]Konstantinov SR, Favier CF, Zhu WY, Williams BA, Kluess J, Souffrant W-B, de Vos WM, Akkermans ADL, Smidt H. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim Res. 2004; 53:317-24.
  • [65]Lallès J-P, Bosi P, Smidt H, Stokes CR. Weaning — A challenge to gut physiologists. Livest Sci. 2007; 108:82-93.
  • [66]Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, Chaturvedi V, Strong BS, Qualls JE, Steinbrecher KA, Kalfa TA, Shaaban AF, Way SS. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature. 2013; 504:158-62.
  • [67]Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014; 157:121-41.
  • [68]Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336:1268-73.
  • [69]Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012; 336:1262-7.
  • [70]Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004; 5:101-13.
  • [71]Albert R, Jeong H, Barabasi A-L. Error and attack tolerance of complex networks. Nature. 2000; 406:378-82.
  • [72]Jeong H, Mason SP, Barabasi A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001; 411:41-2.
  • [73]Ekman D, Light S, Björklund ÅK, Elofsson A. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol. 2006; 7:R45. BioMed Central Full Text
  • [74]Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotech. 2009; 27:199-204.
  • [75]Levy DE, Darnell JE. STATs: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002; 3:651-62.
  • [76]Levy DE, Lee C. What does Stat3 do? J Clin Invest. 2002; 109:1143-8.
  • [77]Poe SL, Arora M, Oriss TB, Yarlagadda M, Isse K, Khare A, Levy DE, Lee JS, Mallampalli RK, Chan YR, Ray A, Ray P. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol. 2013; 6:189-99.
  • [78]Lad SP, Fukuda EY, Li J, Luis M, Li E. Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection. J Immunol. 2005; 174:7186-93.
  • [79]Kernbauer E, Maier V, Stoiber D, Strobl B, Schneckenleithner C, Sexl V, Reichart U, Reizis B, Kalinke U, Jamieson A, Müller M, Decker T. Conditional Stat1 ablation reveals the importance of interferon signaling for immunity to listeria monocytogenes infection. PLoS Pathog. 2012; 8: Article ID e1002763
  • [80]Avalle L, Pensa S, Regis G, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis: a matter of balance. JAK-STAT. 2012; 1(2):65-72.
  • [81]Fryknäs M, Dhar S, Öberg F, Rickardson L, Rydåker M, Göransson H, Gustafsson M, Pettersson U, Nygren P, Larsson R, Isaksson A. STAT1 signaling is associated with acquired crossresistance to doxorubicin and radiation in myeloma cell lines. Int J Cancer. 2007; 120:189-95.
  • [82]Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol. 2001; 13:211-7.
  • [83]Qing Y, Stark GR. Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J Biol Chem. 2004; 279:41679-85.
  • [84]Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, de Vos WM. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. 2006; 8:1191-9.
  • [85]Inoue R, Tsukahara T, Nakanishi N, Ushida K. Development of the intestinal microbiota in the piglet. J Gen Appl Microbiol. 2005; 51:257-65.
  • [86]Tulathromycin. 2004.
  • [87]Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiol. 2010; 156(11):3216-23.
  • [88]Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun. 2009; 77(6):2367-75.
  • [89]Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012; 6:1535-43.
  • [90]Abell GCJ, Cooke CM, Bennett CN, Conlon MA, McOrist AL. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol. 2008; 66:505-15.
  • [91]Zheng G, Yampara Iquise H, Jones JE, Andrew Carson C. Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces. J Appl Microbiol. 2009; 106:634-41.
  • [92]Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CCGM, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012; 6:1415-26.
  • [93]Wang X, Tao YF, Huang LL, Chen DM, Yin SZ, Ihsan A, Zhou W, Su SJ, Liu ZL, Pan YH, Yuan ZH. Pharmacokinetics of tulathromycin and its metabolite in swine administered with an intravenous bolus injection and a single gavage. J Vet Pharmacol Ther. 2012; 35:282-9.
  • [94]Benchaoui HA, Nowakowski M, Sherington J, Rowan TG, Sunderland SJ. Pharmacokinetics and lung tissue concentrations of tulathromycin in swine. J Vet Pharmacol Ther. 2004; 27:203-10.
  • [95]Creamer B, Shorter RG, Bamforth J. The turnover and shedding of epithelial cells: part I the turnover in the gastro-intestinal tract. Gut. 1961; 2:110-6.
  • [96]Van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009; 71:241-60.
  • [97]Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Zárate Rodriguez JG, Rogers AB, Robine N, Loke P, Blaser MJ. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2015; 158:705-21.
  • [98]Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996; 272:54-60.
  • [99]Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev. 2013; 26:191-209.
  文献评价指标  
  下载次数:49次 浏览次数:14次