期刊论文详细信息
BMC Genomics
Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing
Hyung Wook Kwon7  Gyoungju Nah5  Owain R Edwards4  Tae-Jin Yang5  Ik-Young Choi1  Yoonseong Park2  Myeong-Lyeol Lee6  Yong-Soo Choi6  Yeisoo Yu3  Jongsung Lim1  Jeongsoo Lee1  Murukarthick Jayakodi5  Beom-Soon Choi1  Je Won Jung7  Doori Park7 
[1] National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea;Department of Entomology, Kansas State University, Manhattan, Kansas, USA;Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA;CSIRO Ecosystem Sciences, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA 6014, Australia;Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea;National Institute of Agricultural Biotechnology, Rural development Administration, Suwon 441-707, Republic of Korea;Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
关键词: Honey bee immunity;    Chemosensory receptors;    Social insect;    Genome;    Asian honey bee;    Apis cerana;   
Others  :  1121412
DOI  :  10.1186/1471-2164-16-1
 received in 2014-08-01, accepted in 2014-12-02,  发布年份 2015
PDF
【 摘 要 】

Background

The honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana.

Results

Using de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes.

Conclusions

This first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.

【 授权许可】

   
2015 Park et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150212022121758.pdf 2502KB PDF download
Figure 6. 95KB Image download
Figure 5. 175KB Image download
Figure 4. 106KB Image download
Figure 3. 97KB Image download
Figure 2. 62KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Galizia CG, Eisenhardt D, Giurfa M, Menzel R: Honeybee Neurobiology and Behavior : A Tribute to Randolf Menzel. Dordrecht Netherlands. New York: Springer; 2012.
  • [2]Begna DHB, Feng M, Li J: Differential expression of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: a deep insight into caste pathway decisions. J Proteome Res 2012, 11:1317-1329.
  • [3]Zayed ARG: Understanding the relationship between brain gene expression and social behavior: lessons from the honey Bee. Annu Rev Genet 2012, 46:591-615.
  • [4]Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, Robinson GE, Maleszka R: DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A 2012, 109:4968-4973.
  • [5]Honeybee: Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443:931-949.
  • [6]Monica C, Munoz-Torres JTR, Christopher P, Childers Anna K, Bennett Jaideep P, Sundaram Kevin L, Childs Juan M, Anzola Natalia M, Elsik CG: Hymenoptera genome database: integrated community resources for insect species of the order hymenoptera. Nucleic Acids Res 2011, 39:D658-D662.
  • [7]Oldroyd BP, Wongsiri S: Asian Honey Bees : Biology, Conservation, and Human Interactions. Cambridge, Mass: Harvard University Press; 2006.
  • [8]Engel MS: A monography of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bull Am Mus Nat Hist 2001, 259:5-192.
  • [9]Arias MC, Sheppard WS: Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol Phylogenet Evol 1996, 5:557-566.
  • [10]Arias MC, Sheppard WS: Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol Phylogenet Evol 2005, 37:25-35.
  • [11]Xu P, Shi M, Chen XX: Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. Plos one 2009, 4:e4239.
  • [12]YS Peng YF, Xu S, Ge S: The resistance mechanism of the Asian honey Bee, apis cerana fabr., to an ectoparasitic mite, varroa jacobsoni oudemans. J Invertebr Pathol 1987, 49:54-60.
  • [13]Ono M, Okada I, Sasaki M: Heat protection by balling in the japanese honeybee Apis cerana japonica as a defensive behavior against the hornet, Vespa simillima xanthoptera (Hymenoptera: Vespidae). Experientia 1987, 43:1031-1032.
  • [14]Morse RA, Shearer DA, Bosh SR, Benton AW: Observation on alarm substances in the genus Apis. J Api Res 1967, 6:113-118.
  • [15]Ono M, Garashi T, Ohno E, Sasaki M: Unusual thermal defence by a honeybee against mass attack by hornets. Nature 1995, 377:334-336.
  • [16]Wang Zi L, Liu TT, Huang Zachary Y, Wu Xiao B, Wei Yu Y, Zhi Jiang Z: Transcriptome analysis of the Asian honey Bee apis cerana cerana. Plos one 2012, 7:e47954.
  • [17]Dyer FC, Seeley TD: Interspecific comparisons of endothermy in honeybees (Apis): deviations from the expected size-related patterns. J Exp Biol 1987, 122:1-26.
  • [18]Seeley TD, Seeley RH: Colony defense strategies of the honeybee in Thailand. Ecol Monogr 1982, 52:43-63.
  • [19]Seeley TD, Morse RA: Dispersal behavior of honey Bee swarms. Psyche 1977, 84:199-209.
  • [20]Hadisoesilo S, Otis G: Differences in drone cappings of Apis cerana and Apis nigrocincta. J Apic Res 1998, 37:11-15.
  • [21]Atwal AS, Dhaliwal GS: Some behavioural characteristics of Apis indica F and Apis mellifera L. Indian Bee J 1969, 31:83-90.
  • [22]Koetz AH: Ecology, behaviour and control of apis cerana with a focus on relevance to the Australian incursion. Insects 2013, 4:558-592.
  • [23]Li JKFM, Zhang L, Zhang ZH, Pan YH: Proteomics analysis of major royal jelly protein changes under different storage conditions. J Proteome Res 2008, 7:3339-3353.
  • [24]Miyamoto S: Biological studies on Japanese Bees. X Defferences in flower relationship between a Japanese and a European honeybee. Sci Rep Hyogo Univ Agric Ser agric Biol 1958, 3:99-101.
  • [25]Hongxia Ai XY, Richou H: Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. J Invertebr Pathol 2012, 109:160-164.
  • [26]Choe SE, Nguyen TT, Hyun BH, Noh JH, Lee HS, Lee CH, Kang SW: Genetic and phylogenetic analysis of South Korean sacbrood virus isolates from infected honey bees (Apis cerana). Vet Microbiol 2012, 157:32-40.
  • [27]Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Fave MJ, Fernandes V, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Helmkampf M, Holley JA, Hu H, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Laird J, Mathis KA, Moeller JA, Muñoz-Torres MC, Murphy MC, et al.: Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci U S A 2011, 108:5673-5678.
  • [28]Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, Holt C, Hu H, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Favé MJ, Fernandes V, Gibson JD, Graur D, Gronenberg W, Grubbs KJ, Hagen DE, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Mathis KA, Munoz-Torres MC, Murphy MC, et al.: Draft genome of the red harvester ant Pogonomyrmex barbatus. Proc Natl Acad Sci U S A 2011, 108:5667-5672.
  • [29]Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, Ingram KK, Falquet L, Nipitwattanaphon M, Gotzek D, Dijkstra MB, Oettler J, Comtesse F, Shih CJ, Wu WJ, Yang CC, Thomas J, Beaudoing E, Pradervand S, Flegel V, Cook ED, Fabbretti R, Stockinger H, Long L, Farmerie WG, Oakey J, Boomsma JJ, Pamilo P, Yi SV, Heinze J, et al.: The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A 2011, 108:5679-5684.
  • [30]Gadau J, Helmkampf M, Nygaard S, Roux J, Simola DF, Smith CR, Suen G, Wurm Y, Smith CD: The genomic impact of 100 million years of social evolution in seven ant species. Trends Genet 2012, 28:14-21.
  • [31]Gnerre S, MacCallum I, Przybylski D, Ribeiro F, Burton J, Walker B, Sharpe T, Hall G, Shea T, Sykes S, Berlin A, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB: High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 2010, 108:1513-1518.
  • [32]Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, de Graaf DC, Debyser G, Deng J, Devreese B, Elhaik E, Evans JD, Foster LJ, Graur D, Guigo R, Hoff KJ, Holder ME, Hudson ME, Hunt GJ, Jiang H, Joshi V, Khetani RS, Kosarev P, Kovar CL, Ma J, Maleszka R, Moritz RF, Munoz-Torres MC, Murphy TD, HGSC production teams, et al.: Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 2014, 15:86. BioMed Central Full Text
  • [33]Tan HW, Liu GH, Dong X, Lin RQ, Song HQ, Huang SY, Yuan ZG, Zhao GH, Zhu XQ: The complete mitochondrial genome of the Asiatic cavity-nesting honeybee apis cerana (hymenoptera: apidae). Plos one 2011, 6:e23008.
  • [34]Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, Zhang P, Huang Z, Berger SL, Reinberg D, Wang J, Liebig J: Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 2010, 329:1068-1071.
  • [35]Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, Bouffard P, Caldera EJ, Cash E, Cavanaugh A, Denas O, Elhaik E, Favé MJ, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Harkins TT, Helmkampf M, Hu H, Johnson BR, Kim J, Marsh SE, Moeller JA, Muñoz-Torres MC, Murphy MC, Naughton MC, Nigam S, Overson R, et al.: The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genet 2011, 7:e1002007.
  • [36]Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson HM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schlüns H, Schmitt T, Schneider M, Schüler A, Schurko AM, Shuker DM, Simões ZL, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, et al.: Functional and evolutionary insights from the genomes of three parasitoid nasonia species. Science 2010, 327:343-348.
  • [37]Coulondre C, Miller JH, Farabaugh PJ, Gilbert W: Molecular basis of base substitution hotspots in Escherichia coli. Nature 1978, 274:775-780.
  • [38]Yi SV, Goodisman MA: Computational approaches for understanding the evolution of DNA methylation in animals. Epigenetics Off J DNA Methylation Soc 2009, 4:551-556.
  • [39]Bird AP: DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 1980, 8:1499-1504.
  • [40]Glastad KM, Hunt BG, Yi SV, Goodisman MA: DNA methylation in insects: on the brink of the epigenomic era. Insect Mol Biol 2011, 20:553-565.
  • [41]Okamura K, Matsumoto KA, Nakai K: Gradual transition from mosaic to global DNA methylation patterns during deuterostome evolution. BMC Bioinform 2010, 7(11 Suppl):S2.
  • [42]International Aphid Genomics Consortium: Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 2010, 8:e1000313.
  • [43]Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M, Roux J, Nygaard S, Glastad KM, Hagen DE, Viljakainen L, Reese JT, Hunt BG, Graur D, Elhaik E, Kriventseva EV, Wen J, Parker BJ, Cash E, Privman E, Childers CP, Muñoz-Torres MC, Boomsma JJ, Bornberg-Bauer E, Currie CR, Elsik CG, Suen G, Goodisman MA, Keller L, Liebig J, Rawls A, et al.: Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Res 2013, 23:1235-1247.
  • [44]International Silkworm Genome C: The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 2008, 38:1036-1045.
  • [45]Robertson HM: The mariner transposable element is widespread in insects. Nature 1993, 362:241-245.
  • [46]Lampe DJ, Witherspoon DJ, Soto-Adames FN, Robertson HM: Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 2003, 20:554-562.
  • [47]Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM: RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 2014, 42:D756-D763.
  • [48]Brandi L, Cantarel IK, Sofia MC, Robb G, Parra Eric R, Barry M, Carson H, Alejandro Sánchez A, Mark Y: MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 2008, 18:188-196.
  • [49]Consortium UP: Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 2011, 39:D214-D219.
  • [50]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [51]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [52]Breed MD, Seth Perry P, Bjostad LB: Testing the blank slate hypothesis: why honey bee colonies accept young bees. Insect Sociaux 2004, 51:12-16.
  • [53]Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG: A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 2006, 15:615-636.
  • [54]Devillers J, Pham-Delegue MH, Decourtye A, Budzinski H, Cluzeau S, Maurin G: Structure-toxicity modeling of pesticides to honey bees. SAR QSAR Environ Res 2002, 13:641-648.
  • [55]Stefanidou M, Athanaselis S, Koutselinis A: The toxicology of honey bee poisoning. Vet Hum Toxicol 2003, 45:261-265.
  • [56]Ruttner F: Biogeography and Taxonomy of Honeybees. Berlin New York: Springer-Verlag; 1988.
  • [57]Woodard SH, Fischman BJ, Venkat A, Hudson ME, Varala K, Cameron SA, Clark AG, Robinson GE: Genes involved in convergent evolution of eusociality in bees. Proc Natl Acad Sci U S A 2011, 108:7472-7477.
  • [58]Fischman BJ, Woodard SH, Robinson GE: Molecular evolutionary analyses of insect societies. Proc Natl Acad Sci U S A 2011, 108(Suppl 2):10847-10854.
  • [59]Robertson HM, Wanner KW: The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 2006, 16:1395-1403.
  • [60]Robertson HM, Warr CG, Carlson JR: Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 2003, 100:14537-14542.
  • [61]Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB: Variant ionotropic glutamate receptors as chemosensory receptors in drosophila. Cell 2009, 136:149-162.
  • [62]Robertson HM, Gadau J, Wanner KW: The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 2010, 19:121-136.
  • [63]Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R: Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 2010, 6:e1001064.
  • [64]Morel RKVMaL: NESTMATE RECOGNITION IN ANTS. 1998.
  • [65]Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S: Nestmate recognition cues in the honey Bee: differential importance of cuticular alkanes and alkenes. Chem Senses 2005, 30:477-489.
  • [66]Châline N, Sandoz JC, Martin SJ, Ratnieks FL, Jones GR: Learning and discrimination of individual cuticular hydrocarbons by honeybees (apis mellifera). Chem Senses 2005, 30:327-335.
  • [67]de Brito Sanchez MG: Taste perception in honey bees. Chem Senses 2011, 36:675-692.
  • [68]Robinson GE: Genomics and integrative analyses of division of labor in honeybee colonies. Am Nat 2002, 160(Suppl 6):S160-S172.
  • [69]Wang Y, Brent CS, Fennern E, Amdam GV: Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet 2012, 8:e1002779.
  • [70]Kent LB, Walden KK, Robertson HM: The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem Senses 2008, 33:79-93.
  • [71]Peter J, Clyne CGW, John R, Carlson: Candidate taste receptors in Drosophila. Science 2000, 287:1830-1834.
  • [72]Montell C: A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 2009, 19:345-353.
  • [73]Tetsuya Miyamoto YC, Jesse S, Hubert A: Identification of a drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons. Plos one 2013, 8:e56304.
  • [74]Miyamoto T, Slone J, Song X, Amrein H: A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 2012, 151:1113-1125.
  • [75]Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ: A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 2004, 431:854-859.
  • [76]Stange G: The response of the honeybee antennal CO2-receptors to N2O and Xe. J Comp Physiol 1973, 86:139-158.
  • [77]Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS: Acid sensing by the Drosophila olfactory system. Nature 2010, 468:691-695.
  • [78]Wanner KW, Nichols AS, Walden KK, Brockmann A, Luetje CW, Robertson HM: A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci U S A 2007, 104:14383-14388.
  • [79]Hallem EA, Dahanukar A, Carlson JR: Insect odor and taste receptors. Annu Rev Entomol 2006, 51:113-135.
  • [80]SCHMIDT J: Toxinology of venoms from the honeybee genus apis. Toxicon 1995, 33:917-927.
  • [81]Raffiudin R, Crozier RH: Phylogenetic analysis of honey bee behavioral evolution. Mol Phylogenet Evol 2007, 43:543-552.
  • [82]Krieger J, Klink O, Mohl C, Raming K, Breer H: A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A 2003, 189:519-526.
  • [83]Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB: Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004, 43:703-714.
  • [84]Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB: Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 2005, 15:R119-R121.
  • [85]Benton R, Sachse S, Michnick SW, Vosshall LB: Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 2006, 4:e20.
  • [86]Yao CA, Ignell R, Carlson JR: Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 2005, 25:8359-8367.
  • [87]Hallem EA, Carlson JR: Coding of odors by a receptor repertoire. Cell 2006, 125:143-160.
  • [88]Silbering AF, Rytz R, Grosjean Y, Abuin L, Ramdya P, Jefferis GS, Benton R: Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J Neurosci 2011, 31:13357-13375.
  • [89]Rytz R, Croset V, Benton R: Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol 2013, 43:888-897.
  • [90]Chao Liu RJP, Jonathan D, Bohbot JD, Jones Patrick L, Wang G, Zwiebel LJ: Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol 2010, 8:e1000467.
  • [91]Olivier V, Monsempes C, François MC, Poivet E, Jacquin-Joly E: Candidate chemosensory ionotropic receptors in a Lepidoptera. Insect Mol Biol 2010, 20:189-199.
  • [92]Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK: Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 2009, 7:34. BioMed Central Full Text
  • [93]Evans JD, Spivak M: Socialized medicine: Individual and communal disease barriers in honey bees. J Invertebr Pathol 2010, 103:S62-S72.
  • [94]Li J, Qin H, Wu J, Sadd BM, Wang X, Evans JD, Peng W, Chen Y: The prevalence of parasites and pathogens in Asian honeybees Apis Cerana in china. Plos one 2012, 7:e47955.
  • [95]Yoo MS, Yoon BS: Incidence of honey bee disease in Korea 2009. Korean J Apic 2009, 24:273-278.
  • [96]Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D: Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 2006, 15:645-656.
  • [97]Park D, Jung JW, Lee MO, Lee SY, Kim B, Jin HJ, Kim J, Ahn YJ, Lee KW, Song YS, Hong S, Womack JE, Kwon HW: Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana. Peptides 2014, 53:185-193.
  • [98]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 2013, 8:1494-1512.
  • [99]Lukashin AV, Borodovsky M: GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 1998, 26:1107-1115.
  • [100]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110:462-467.
  • [101]Grant JR, Stothard P: The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008, 36:W181-W184.
  • [102]Altschul SFGW, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [103]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578.
  • [104]Slater GS, Birney E: Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 2005, 6:31. BioMed Central Full Text
  • [105]Lee E, Harris N, Gibson M, Chetty R, Lewis S: Apollo: a community resource for genome annotation editing. Bioinformatics 2009, 25:1836-1837.
  • [106]St Pierre SE, Ponting L, Stefancsik R, McQuilton P, FlyBase Consortium: FlyBase 102–advanced approaches to interrogating FlyBase. Nucleic Acids Res 2014, 42:D780-D788.
  • [107]Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ Jr: Using OrthoMCL to Assign Proteins to OrthoMCL-DB Groups or to Cluster Proteomes into new Ortholog Groups. Current Protocols in Bioinformatics / Editoral Board, Andreas D Baxevanis 2011. Chapter 6:Unit 6 12 11–19
  • [108]Stephen F, Altschul TLM, Alejandro A, Schäffer Jinghui Z, Zheng Zhang WM, David J, Lipman: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [109]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40:290-301.
  • [110]MOTIF http://www.genome.jp/tools/motif/ webcite
  • [111]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [112]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [113]Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12:323. BioMed Central Full Text
  • [114]Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W: PipMaker–a web server for aligning two genomic DNA sequences. Genome Res 2000, 10:577-586.
  • [115]Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database C: The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 2012, 40:D54-D56.
  文献评价指标  
  下载次数:5次 浏览次数:3次