期刊论文详细信息
BMC Genomics
Comparative genomics of first available bovine Anaplasma phagocytophilum genome obtained with targeted sequence capture
Renaud Maillard1  Nadia Haddad2  Henri-Jean Boulouis2  Anne-Claire Lagrée2  Marco Moroldo3  Sylvain Marthey3  Valentin Loux4  Thibaud Dugat2 
[1] Unité pathologie des ruminants, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France;Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR ENVA Anses UPEC USC INRA, Maisons-Alfort, France;INRA, Centre de Ressources Biologiques Génomique des Animaux Domestiques et d’Intérêt Economique, Jouy-En-Josas, France;INRA, UR1077 Mathématique, Informatique et Génome, Jouy-En-Josas, France
关键词: Whole genome sequencing;    Targeted sequence capture;    Tick-borne fever;    Granulocytic anaplasmosis;    Comparative genomics;    Cattle;    Anaplasma phagocytophilum;   
Others  :  1127600
DOI  :  10.1186/1471-2164-15-973
 received in 2014-08-13, accepted in 2014-10-30,  发布年份 2014
PDF
【 摘 要 】

Background

Anaplasma phagocytophilum is a zoonotic and obligate intracellular bacterium transmitted by ticks. In domestic ruminants, it is the causative agent of tick-borne fever, which causes significant economic losses in Europe. As A. phagocytophilum is difficult to isolate and cultivate, only nine genome sequences have been published to date, none of which originate from a bovine strain.

Our goals were to; 1/ develop a sequencing methodology which efficiently circumvents the difficulties associated with A. phagocytophilum isolation and culture; 2/ describe the first genome of a bovine strain; and 3/ compare it with available genomes, in order to both explore key genomic features at the species level, and to identify candidate genes that could be specific to bovine strains.

Results

DNA was extracted from a bovine blood sample infected by A. phagocytophilum. Following a whole genome capture approach, A. phagocytophilum DNA was enriched 197-fold in the sample and then sequenced using Illumina technology. In total, 58.9% of obtained reads corresponded to the A. phagocytophilum genome, covering 85.3% of the HZ genome. Then by performing comparisons with nine previously-sequenced A. phagocytophilum genomes, we determined the core genome of these ten strains. Following analysis, 1281 coding DNA sequences, including 1001 complete sequences, were detected in the A. phagocytophilum bovine genome, of which four appeared to be unique to the bovine isolate. These four coding DNA sequences coded for "hypothetical proteins of unknown function” and require further analysis. We also identified nine proteins common to both European domestic ruminants tested.

Conclusion

Using a whole genome capture approach, we have sequenced the first A. phagocytophilum genome isolated from a cow. To the best of our knowledge, this is the first time that this method has been used to selectively enrich pathogenic bacterial DNA from samples also containing host DNA. The four proteins unique to the A. phagocytophilum bovine genome could be involved in host tropism, therefore their functions need to be explored.

【 授权许可】

   
2014 Dugat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150221020038398.pdf 945KB PDF download
Figure 5. 39KB Image download
Figure 4. 50KB Image download
Figure 3. 51KB Image download
Figure 2. 35KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schuster SC: Next-generation sequencing transforms today’s biology. Nat Methods 2008, 5:16-18.
  • [2]MacLean D, Jones JDG, Studholme DJ: Application of “next-generation” sequencing technologies to microbial genetics. Nat Rev Microbiol 2009, 7:287-296.
  • [3]Bertelli C, Greub G: Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 2013, 19:803-813.
  • [4]Firth C, Lipkin WI: The genomics of emerging pathogens. Annu Rev Genomics Hum Genet 2013, 14:281-300.
  • [5]Kent BN, Salichos L, Gibbons JG, Rokas A, Newton ILG, Clark ME, Bordenstein SR: Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol 2011, 3:209-218.
  • [6]Dark MJ, Lundgren AM, Barbet AF: Determining the repertoire of immunodominant proteins via whole-genome amplification of intracellular pathogens. PLoS ONE 2012, 7(4):e36456.
  • [7]Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR: Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001, 51:2145-2165.
  • [8]Stuen S, Granquist EG, Silaghi C: Anaplasma phagocytophilum–a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013, 3:31.
  • [9]Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen J, Seshadri R, Ren Q, Wu M, Utterback TR, Smith S, Lewis M, Khouri H, Zhang C, Niu H, Lin Q, Ohashi N, Zhi N, Nelson W, Brinkac LM, Dodson RJ, Rosovitz MJ, Sundaram J, Daugherty SC, Davidsen T, Durkin AS, Gwinn M, Haft DH, Selengut JD, Sullivan SA, et al.: Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2006, 2:208-223.
  • [10]Barbet AF, Al-Khedery B, Stuen S, Granquist EG, Felsheim RF, Munderloh UG: An emerging tick-borne disease of humans is caused by a subset of strains with conserved genome structure. Pathogens 2013, 2:544-555.
  • [11]Centers for disease control and prevention, statistics and epidemiology of anaplasmosis [http://www.cdc.gov/anaplasmosis/stats/ webcite]
  • [12]Edouard S, Koebel C, Goehringer F, Socolovschi C, Jaulhac B, Raoult D, Brouqui P: Emergence of human granulocytic anaplasmosis in France. Ticks Tick-Borne Dis 2012, 3:403-405.
  • [13]Cochez C, Ducoffre G, Vandenvelde C, Luyasu V, Heyman P: Human anaplasmosis in Belgium: A 10-year seroepidemiological study. Ticks Tick-Borne Dis 2011, 2:156-159.
  • [14]Woldehiwet Z: Anaplasma phagocytophilum in ruminants in Europe. Ann N Y Acad Sci 2006, 1078:446-460.
  • [15]Pusterla N, Braun U: Clinical findings in cows after experimental infection with Ehrlichia phagocytophila. Zentralblatt Für Veterinärmedizin Reihe A 1997, 44:385-390.
  • [16]Brodie TA, Holmes PH, Urquhart GM: Some aspects of tick-borne diseases of British sheep. Vet Rec 1986, 118:415-418.
  • [17]Foley J, Nieto NC, Madigan J, Sykes J: Possible differential host tropism in Anaplasma phagocytophilum strains in the Western United States. Ann N Y Acad Sci 2008, 1149:94-97.
  • [18]Morissette E, Massung RF, Foley JE, Alleman AR, Foley P, Barbet AF: Diversity of Anaplasma phagocytophilum Strains, USA. Emerg Infect Dis 2009, 15:928-931.
  • [19]Stannard AA, Gribble DH, Smith RS: Equine ehrlichiosis: a disease with similarities to tick-borne fever and bovine petechial fever. Vet Rec 1969, 84:149-150.
  • [20]Pusterla N, Lutz H, Braun U: Experimental infection of four horses with Ehrlichia phagocytophila. Vet Rec 1998, 143:303-305.
  • [21]Massung RF, Priestley RA, Miller NJ, Mather TN, Levin ML: Inability of a variant strain of Anaplasma phagocytophilum to infect mice. J Infect Dis 2003, 188:1757-1763.
  • [22]Massung RF, Mather TN, Levin ML: Reservoir competency of goats for the Ap-variant 1 strain of anaplasma phagocytophilum. Infect Immun 2006, 74:1373-1375.
  • [23]Massung RF, Courtney JW, Hiratzka SL, Pitzer VE, Smith G, Dryden RL: Anaplasma phagocytophilum in white-tailed deer. Emerg Infect Dis 2005, 11:1604-1606.
  • [24]Tate CM, Mead DG, Luttrell MP, Howerth EW, Dugan VG, Munderloh UG, Davidson WR: Experimental infection of white-tailed deer with Anaplasma phagocytophilum, etiologic agent of human granulocytic anaplasmosis. J Clin Microbiol 2005, 43:3595-3601.
  • [25]Geniez S, Foster JM, Kumar S, Moumen B, LeProust E, Hardy O, Guadalupe M, Thomas SJ, Boone B, Hendrickson C, Bouchon D, Greve P, Slatko BE: Targeted genome enrichment for efficient purification of endosymbiont DNA from host DNA. Symbiosis Phila Pa 2012, 58:201-207.
  • [26]Bright AT, Tewhey R, Abeles S, Chuquiyauri R, Llanos-Cuentas A, Ferreira MU, Schork NJ, Vinetz JM, Winzeler EA: Whole genome sequencing analysis of Plasmodium vivax using whole genome capture. BMC Genomics 2012, 13:262. BioMed Central Full Text
  • [27]The khmer software package: enabling efficient sequence analysis [http://figshare.com/articles/The_khmer_software_package_enabling_efficient_sequence_analysis/979190 webcite]
  • [28]Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH: A reference-free algorithm for computational normalization of shotgun sequencing data. ArXiv12034802 Q-Bio 2012, 1:1-18.
  • [29]Melnikov A, Galinsky K, Rogov P, Fennell T, Van Tyne D, Russ C, Daniels R, Barnes KG, Bochicchio J, Ndiaye D, Sene PD, Wirth DF, Nusbaum C, Volkman SK, Birren BW, Gnirke A, Neafsey DE: Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol 2011, 12:R73. BioMed Central Full Text
  • [30]Bougarn S, Cunha P, Gilbert FB, Meurens F, Rainard P: Technical note: Validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli. J Dairy Sci 2011, 94:2425-2430.
  • [31]Pallen MJ, Wren BW: Bacterial pathogenomics. Nature 2007, 449:835-842.
  • [32]Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie J-M, Raoult D: Reductive genome evolution from the mother of rickettsia. PLoS Genet 2007, 3(1):e14.
  • [33]Darby AC, Cho N-H, Fuxelius H-H, Westberg J, Andersson SGE: Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 2007, 23:511-520.
  • [34]Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J, Siozios S, Nene V, Werren J, Bourtzis K, Bordenstein SR, Tettelin H: Extensive genomic diversity of closely related Wolbachia strains. Microbiology 2009, 155(Pt 7):2211-2222.
  • [35]Frutos R, Viari A, Ferraz C, Morgat A, Eychenie S, Kandassamy Y, Chantal I, Bensaid A, Coissac E, Vachiery N, Demaille J, Martinez D: Comparative genomic analysis of three strains of Ehrlichia ruminantium reveals an active process of genome size plasticity. J Bacteriol 2006, 188:2533-2542.
  • [36]Frutos R, Viari A, Ferraz C, Bensaid A, Morgat A, Boyer F, Coissac E, Vachiéry N, Demaille J, Martinez D: Comparative genomics of three strains of Ehrlichia ruminantium: a review. Ann N Y Acad Sci 2006, 1081:417-433.
  • [37]Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y: Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front Microbiol 2011, 2:24.
  • [38]Hobbs EC, Fontaine F, Yin X, Storz G: An expanding universe of small proteins. Curr Opin Microbiol 2011, 14:167-173.
  • [39]Andrews SJ, Rothnagel JA: Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014, 15:193-204.
  • [40]Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M: Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 2007, 13:1510-1514.
  • [41]Truchan HK, Seidman D, Carlyon JA: Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. Microbes Infect 2013, 15:1017-1025.
  • [42]Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, Karandashova S, Miller DP, Tegels BK, Marconi RT, Fikrig E, Borjesson DL, Carlyon JA: Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol 2014, 16(8):1133-1145.
  • [43]Ge Y, Rikihisa Y: Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J Bacteriol 2007, 189:7819-7828.
  • [44]Kahlon A, Ojogun N, Ragland SA, Seidman D, Troese MJ, Ottens AK, Mastronunzio JE, Truchan HK, Walker NJ, Borjesson DL, Fikrig E, Carlyon JA: Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun 2013, 81:65-79.
  • [45]Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, Viebrock L, Thomas RJ, Borjesson DL, Fikrig E, Carlyon JA: Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun 2012, 80:3748-3760.
  • [46]Barbet AF, Lundgren AM, Alleman AR, Stuen S, Bjöersdorff A, Brown RN, Drazenovich NL, Foley JE: Structure of the expression site reveals global diversity in MSP2 (P44) variants in Anaplasma phagocytophilum. Infect Immun 2006, 74:6429-6437.
  • [47]Foley JE, Nieto NC, Barbet A, Foley P: Antigen diversity in the parasitic bacterium Anaplasma phagocytophilum arises from selectively-represented, spatially clustered functional pseudogenes. PLoS ONE 2009, 4(12):e8265.
  • [48]Granquist EG, Stuen S, Crosby L, Lundgren AM, Alleman AR, Barbet AF: Variant-specific and diminishing immune responses towards the highly variable MSP2(P44) outer membrane protein of Anaplasma phagocytophilum during persistent infection in lambs. Vet Immunol Immunopathol 2010, 133:117-124.
  • [49]Lin Q, Zhang C, Rikihisa Y: Analysis of involvement of the RecF pathway in p44 recombination in Anaplasma phagocytophilum and in Escherichia coli by using a plasmid carrying the p44 expression and p44 donor loci. Infect Immun 2006, 74:2052-2062.
  • [50]Rejmanek D, Foley P, Barbet A, Foley J: Antigen variability in Anaplasma phagocytophilum during chronic infection of a reservoir host. Microbiology 2012, 158:2632-2641.
  • [51]Tseng T-T, Tyler BM, Setubal JC: Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009, 9(Suppl 1):S2. BioMed Central Full Text
  • [52]Mori H, Ito K: The Sec protein-translocation pathway. Trends Microbiol 2001, 9:494-500.
  • [53]Al-Khedery B, Lundgren AM, Stuen S, Granquist EG, Munderloh UG, Nelson CM, Alleman AR, Mahan SM, Barbet AF: Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum. BMC Genomics 2012, 13:678. BioMed Central Full Text
  • [54]Voth DE, Broederdorf LJ, Graham JG: Bacterial type IV secretion systems: versatile virulence machines. Future Microbiol 2012, 7:241-257.
  • [55]De Buck E, Lammertyn E, Anné J: The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 2008, 16:442-453.
  • [56]Lee PA, Tullman-Ercek D, Georgiou G: The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 2006, 60:373-395.
  • [57]Nunez PA, Soria M, Farber MD: The twin-arginine translocation pathway in alpha-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence. PLoS ONE 2012, 7(3):e33605.
  • [58]Mastronunzio JE, Kurscheid S, Fikrig E: Postgenomic analyses reveal development of infectious Anaplasma phagocytophilum during transmission from ticks to mice. J Bacteriol 2012, 194:2238-2247.
  • [59]Ochsner UA, Vasil AI, Johnson Z, Vasil ML: Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J Bacteriol 1999, 181:1099-1109.
  • [60]Vanini MMT, Spisni A, Sforça ML, Pertinhez TA, Benedetti CE: The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction. Proteins 2008, 71:2051-2064.
  • [61]Gerlach GF, Anderson C, Klashinsky S, Rossi-Campos A, Potter AA, Willson PJ: Molecular characterization of a protective outer membrane lipoprotein (OmlA) from Actinobacillus pleuropneumoniae serotype 1. Infect Immun 1993, 61:565-572.
  • [62]Kanonenberg K, Schwarz CKW, Schmitt L: Type I secretion systems – a story of appendices. Res Microbiol 2013, 164:596-604.
  • [63]Wakeel A, den Dulk-Ras A, Hooykaas PJJ, McBride JW: Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front Cell Infect Microbiol 2011, 1:22.
  • [64]Christie PJ, Whitaker N, González-Rivera C: Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta BBA - Mol Cell Res 2014, 1843:1578-1591.
  • [65]Ohashi N, Zhi N, Lin Q, Rikihisa Y: Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect Immun 2002, 70:2128-2138.
  • [66]Garcia-Garcia JC, Rennoll-Bankert KE, Pelly S, Milstone AM, Dumler JS: Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect Immun 2009, 77:2385-2391.
  • [67]Lin M, Den Dulk-Ras A, Hooykaas PJJ, Rikihisa Y: Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection†. Cell Microbiol 2007, 9:2644-2657.
  • [68]Park J, Kim KJ, Choi K, Grab DJ, Dumler JS: Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell Microbiol 2004, 6:743-751.
  • [69]Niu H, Rikihisa Y: Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 2013, 9:787-788.
  • [70]Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y: Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A 2012, 109:20800-20807.
  • [71]Niu H, Kozjak-Pavlovic V, Rudel T, Rikihisa Y: Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog 2010, 6(2):e1000774.
  • [72]Drazenovich N, Foley J, Brown RN: Use of real-time quantitative PCR targeting the msp2 protein gene to identify cryptic Anaplasma phagocytophilum infections in wildlife and domestic animals. Vector Borne Zoonotic Dis Larchmt N 2006, 6:83-90.
  • [73]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma Oxf Engl 2009, 25:1754-1760.
  • [74]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 2009, 25:2078-2079.
  • [75]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18:821-829.
  • [76]Bryson K, Loux V, Bossy R, Nicolas P, Chaillou S, van de Guchte M, Penaud S, Maguin E, Hoebeke M, Bessières P, Gibrat J-F: AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system. Nucleic Acids Res 2006, 34:3533-3545.
  • [77]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5:R12. BioMed Central Full Text
  • [78]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [79]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [80]Zharkikh A, Li WH: Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol Phylogenet Evol 1995, 4:44-63.
  • [81]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
  • [82]Shen H-B, Chou K-C: Signal-3 L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 2007, 363:297-303.
  • [83]Frank K, Sippl MJ: High-performance signal peptide prediction based on sequence alignment techniques. Bioinforma Oxf Engl 2008, 24:2172-2176.
  文献评价指标  
  下载次数:56次 浏览次数:19次