BMC Genetics | |
Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine | |
Alla Krasikova3  Alsu Saifitdinova3  Leo Borkin4  Spartak Litvinchuk1  Juriy Rosanov1  Dmitry Shabanov2  Glib Mazepa2  Dmitry Dedukh3  | |
[1] Institute of Cytology Russian Academy of Sciences, Tikhoretsky pr. 4, St. Petersburg 194064, Russia;V.N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine;Saint-Petersburg State University, Oranienbaumskoie sch. 2, Stary Peterhof, Saint-Petersburg 198504, Russia;Zoological Institute, Russian Academy of Sciences, Universitetskaia nab.1, St. Petersburg 199034, Russia | |
关键词: Telomere; Oocyte; Nuclear body; Non-coding RNA; Karyotype; Hybridization; European water frog; Chromosome; Centromere; | |
Others : 1087257 DOI : 10.1186/1471-2156-14-26 |
|
received in 2013-01-03, accepted in 2013-04-04, 发布年份 2013 | |
【 摘 要 】
Background
Hybridogenesis (hemiclonal inheritance) is a kind of clonal reproduction in which hybrids between parental species are reproduced by crossing with one of the parental species. European water frogs (Pelophylax esculentus complex) represent an appropriate model for studying interspecies hybridization, processes of hemiclonal inheritance and polyploidization. P. esculentus complex consists of two parental species, P. ridibundus (the lake frog) and P. lessonae (the pool frog), and their hybridogenetic hybrid – P. esculentus (the edible frog). Parental and hybrid frogs can reproduce syntopically and form hemiclonal population systems. For studying mechanisms underlying the maintenance of water frog population systems it is required to characterize the karyotypes transmitted in gametes of parental and different hybrid animals of both sexes.
Results
In order to obtain an instrument for characterization of oocyte karyotypes in hybrid female frogs, we constructed cytological maps of lampbrush chromosomes from oocytes of both parental species originating in Eastern Ukraine. We further identified certain molecular components of chromosomal marker structures and mapped coilin-rich spheres and granules, chromosome associated nucleoli and special loops accumulating splicing factors. We recorded the dissimilarities between P. ridibundus and P. lessonae lampbrush chromosomes in the length of orthologous chromosomes, number and location of marker structures and interstitial (TTAGGG)n-repeat sites as well as activity of nucleolus organizer. Satellite repeat RrS1 was mapped in centromere regions of lampbrush chromosomes of the both species. Additionally, we discovered transcripts of RrS1 repeat in oocytes of P. ridibundus and P. lessonae. Moreover, G-rich transcripts of telomere repeat were revealed in association with terminal regions of P. ridibundus and P. lessonae lampbrush chromosomes.
Conclusions
The constructed cytological maps of lampbrush chromosomes of P. ridibundus and P. lessonae provide basis to define the type of genome transmitted within individual oocytes of P. esculentus females with different ploidy and from various population systems.
【 授权许可】
2013 Dedukh et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Figure 1. | 75KB | Image | download |
Figure 7. | 111KB | Image | download |
Figure 6. | 128KB | Image | download |
Figure 5. | 234KB | Image | download |
Figure 4. | 128KB | Image | download |
Figure 3. | 83KB | Image | download |
Figure 2. | 152KB | Image | download |
20150428074922561.pdf | 360KB | download |
【 图 表 】
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 1.
【 参考文献 】
- [1]Johnson NA: Direct selection for reproductive isolation: the Wallace effect and reinforcement. In Natural Selection and Beyond: The Intellectual Legacy of Alfred Russel Wallace. Edited by Smith CH, Beccaloni GW. Oxford: Oxford University Press; 2008:114-124.
- [2]Borkin LY, Darevsky IS: Reticulate (hybridogenus) speciation in vertebrata. J Obsh Biol 1980, 41:485-506.
- [3]Barton NH: The role of hybridization in evolution. Mol Ecol 2001, 10:551-568.
- [4]Alves MJ, Coelho MM, Collares-Pereira MJ: Evolution in action through hybridization and polyploidy in an Iberian fresh water fish: a genetic review. Genetica 2001, 111:375-385.
- [5]Stöck M, Steinlein C, Lamatsch DK, Schartl M, Schmid M: Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 2005, 124:255-272.
- [6]Plötner J: Die westpaläarktichen Wasserfrösche. Bielefeld: Laurenti-Verlag; 2005.
- [7]Berger L: Some characteristics of the crosses within Rana esculenta complex in postlarval development. Ann Zool Fenn 1970, 27:374-416.
- [8]Tunner HG: Das albumin und andere bluteiweiße bei Rana ridibunda Pallas, Rana lessonae Camerano, Rana esculenta Linné und deren hybriden. Z zool Syst Evol 1973, 11:219-233.
- [9]Berger L: On the origin of genetic systems in European water frog hybrids. Zool Poloniae 1990, 35:5-27.
- [10]Borkin LJ, Litvinchuk SN, Mannapova EI, Pestov MV, Rosanov JM: The distribution of green frogs (Rana esculenta complex) in Nizhny Novgorod province, central European Russia. Russ J Herpetol 2003, 9(3):195-208.
- [11]Borkin LJ, Korshunov AV, Lada GA, Litvinchuk SN, Rosanov JM, Shabanov DA, Zinenko AI: Mass occurrence of polyploid green frogs (Rana esculenta complex) in eastern Ukraine. Russ J Herpetol 2004, 11:194-213.
- [12]Shabanov DA, Zinenko AI, Korshunov AV, Kravchenko MO, Mazepa GO: The study of population systems of green frogs (Rana esculenta complex) in Kharkov region: history, modern condition and prospects. Kharkov Nat University J 2006, 3(729):208-220.
- [13]Korshunov AV: Ecological patterns of biotopic distribution of Pelophylax esculentus complex in Kharkiv region. Kharkov Nat University J 2009, 8(828):48-57.
- [14]Heppich S: Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. Z zool Syst Evol 1978, 16:27-39.
- [15]Heppich S, Tunner HG, Greilhuber J: Premeiotic chromosome doubling after genome elemination during spermatogenesis of the species hybrid Rana esculenta. Theor Appl Genet 1982, 61:101-104.
- [16]Bucci S, Ragghianti M, Mancino G, Berger L, Hotz H, Uzzell T: Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool Suppl 1990, 255:37-56.
- [17]Tunner HG, Heppich-Tunner S: Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 1991, 78:32-24. 32–34
- [18]Callan HG: Lampbrush Chromosomes. London: Springer-Verlag; 1986.
- [19]Macgregor HC, Sessions SK, Arntzen JW: An integrative analysis of phylogenetic relationships among newts of the genus Triturus (family Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J Evolution Biol 1990, 3:329-373.
- [20]Macgregor HC: Lampbrush chromosomes and gene utilization in meiotic prophase. Symp Soc Exp Biol 1984, 38:333-347.
- [21]Gaginskaya ER: The lampbrush chromosomes in the amphibian oocytes. Tsitologiia 1989, 31:1267-1291.
- [22]Morgan GT: Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 2002, 10:177-200.
- [23]Gall JG, Wu Z, Murphy C, Gao H: Structure in the amphibian germinal vesicle. Exp Cell Res 2004, 296:28-34.
- [24]Graf JD, Müller WP: Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculenta complex. Experientia 1979, 35:1574-1576.
- [25]Guerrini F, Bucci S, Ragghianti M, Mancino G, Hotz H, Uzzell T, Berger L: Genomes of two water frog species resist germ line exclusion in interspecies hybrids. J Exp Zool 1997, 279:163-176.
- [26]Vinogradov AE, Borkin LJ, Günther R, Rosanov JM: Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome 1990, 33:619-627.
- [27]Ragghianti M, Guerrini F, Bucci S, Mancino G, Hotz H, Uzzell T, Guex GD: Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and parental species. Chromosome Res 1995, 3(8):497-506.
- [28]Macgregor HC, Varley JM, Morgan GT: The transcription of satellite and ribosomal DNA sequences on lampbrush chromosomes of crested newts. In International Cell Biology. Edited by Schweiger HD. Berlin: Heidelberg: Springer-Verlag; 1981:33-46.
- [29]Solovei I, Gaginskaya ER, Macgregor HC: The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds. Chromosome Res 1994, 2:460-470.
- [30]Solovei I, Macgregor HC, Gaginskaya E: Specifically terminal clusters of telomere DNA sequences are transcribed from the C-rich strand on chicken lampbrush chromosomes. In Proceedings of Kew Chromosome Conference IV. Edited by Brandham PF, Bennett MD. Richmond (United Kingdom): Royal Botanic Gardens (KRBG); 1995:323-330.
- [31]Marracci S, Michelotti V, Gaston-Denis G, Hotz H, Uzzell T, Ragghianti M: RrS1-like sequences of water frogs from central Europe and around the Aegean Sea: chromosomal organization, evolution, possible function. J Mol Evol 2011, 72:368-382.
- [32]Krasikova A, Vasilevskaya E, Gaginskaya E: Chicken lampbrush chromosomes: transcription of tandemly repetitive DNA sequences. Russ J Genet 2010, 46:1173-1177.
- [33]Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS: Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 2008, 32:673-684.
- [34]Tucker S, Vitins A, Pikaard CS: Nucleolar dominance and ribosomal RNA gene silencing. Curr Opin Cell Biol 2010, 22:351-356.
- [35]Nizami ZF, Deryusheva S, Gall JG: Cajal bodies and histone locus bodies in Drosophila and Xenopus. Cold Spring Harb Sym 2010, 75:313-320.
- [36]Gall JG, Stephenson EC, Erba HP, Diaz MO, Barsacchi-Pilone G: Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 1981, 84:159-171.
- [37]Callan HG, Gall JG, Murphy C: Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes. Chromosoma 1991, 101:245-251.
- [38]Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP: Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 2006, 17:955-965.
- [39]Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE: A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 2009, 323:644-648.
- [40]Kah Wai Lin JY: Endings in the middle: Current knowledge of interstitial telomeric sequences. Mutat Res 2007, 658:95-110.
- [41]Derjusheva S, Kurganova A, Habermann F, Gaginskaya E: High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Res 2004, 12:715-723.
- [42]Krasikova A, Fukagawa T, Zlotina A: High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. Chromosome Res 2012, 20:995-1008.
- [43]Gaginskaya E, Kulikova T, Krasikova A: Avian lampbrush chromosomes: a powerful tool for exploration of genome expression. Cytogenet Genome Res 2009, 124:251-267.
- [44]Swanberg SE, O’Hare TH, Robb EA, Robinson CM, Chang H, Delany ME: Telomere biology of the chicken: a model for aging research. Exp Gerontol 2010, 45:647-654.
- [45]Luke B, Lingner J: TERRA: telomeric repeat-containing RNA. EMBO J 2009, 28:2503-2510.
- [46]Farnung BO, Giulotto E, Azzalin CM: Promoting transcription of chromosome ends. Transcription 2010, 1:140-143.
- [47]Varley JM, Macgregor HC, Erba HP: Satellite DNA is transcribed on lampbrush chromosomes. Nature 1980, 283:686-688.
- [48]Krasikova A, Gaginskaya E: Organization of centromere regions of chromosomes in the lampbrush phase. Tsitologiia 2010, 52(7):515-533.
- [49]Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG: Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell 1981, 24:649-659.
- [50]Baldwin L, Macgregor HC: Centromeric satellite DNA in the newt Triturus cristatus karelinii and related species: its distribution and transcription on lampbrush chromosomes. Chromosoma 1985, 92:100-107.
- [51]Barsacchi-Pilone G, Batistoni R, Andronico F, Vitelli L, Nardi I: Heterochromatic DNA in Triturus (Amphibia, Urodela). I. A satellite DNA component of the pericentric C-bands. Chromosoma 1986, 93:435-446.
- [52]Solovei I, Joffe BI, Gaginskaya ER, Macgregor HC: Transcription on lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Res 1996, 4:588-603.
- [53]Krasikova A, Deryusheva S, Galkina S, Kurganova A, Evteev A, Gaginskaya E: On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Res 2006, 14:777-789.
- [54]Deryusheva S, Krasikova A, Kulikova T, Gaginskaya E: Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma 2007, 116:519-530.
- [55]Eymery A, Callanan M, Vourc’h C: The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int J Dev Biol 2009, 53:259-268.
- [56]Bianchi NO, Redi C, Garagna C, Capanna E, Manfredi-Romanini MG: Evolution of the genome size in Akodon (Rodentia, Cricetidae). J Mol Evol 1983, 19:362-370.
- [57]Borkin LJ, Eremchenko VK, Helfenberger N, Panfilov AM, Rosanov JM: On the distribution of diploid, triploid, and tetraploid green toads (Bufo viridis complex) in south-eastern Kazakhstan. Russ J Herpetol 2001, 8(1):45-53.
- [58]Litvinchuk SN, Borkin LJ, Rosanov JM: Intra- and interspecific genome size variation in hynobiid salamanders of Russia and Kazakhstan: determination by flow cytometry. Asiat Herpetol Res 2004, 10:282-294.
- [59]Callan HG, Gall JG, Berg CA: The lampbrush chromosomes of Xenopus laevis: preparation, identification and distribution of 5SDNA sequences. Chromosoma 1987, 95:236-250.
- [60]Gall JG, Murphy C, Callan HG, Wu ZA: Lampbrush chromosomes. Method Cell Biol 1991, 36:149-166.
- [61]Schmidt-Zachmann MS, Hugle-Dorr B, Franke WW: A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J 1987, 6:1881-1890.
- [62]Schmidt-Zachmann MS, Hugle B, Scheer U, Franke WW: Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody. Exp Cell Res 1984, 153:327-346.
- [63]Pollard KM, Lee DK, Casiano CA, Bluthner M, Johnston MM, Tan EM: The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties. J Immunol 1997, 158(7):3521-3528.
- [64]Lerner EA, Lerner MR, Janeway CA, Steitz JA: Monoclonal antibodies to nucleic acid-contairdng cellular constituents: Probes for molecular biology and autoimmune disease. P Natl Acad Sci USA 1981, 78:2737-2741.
- [65]Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM: Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 1991, 173:1407-19.