期刊论文详细信息
BMC Research Notes
Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients
Eduardo A Donadi2  Geraldo A Passos2  Elza T Sakamoto-Hojo5  Denis Puthier3  Milton C Foss1  Maria C Foss-Freitas1  Thais Arns2  Diane M Rassi4  Danilo J Xavier2  Adriane F Evangelista2  Cristhianna VA Collares2 
[1] Department of Medicine, Division of Endocrinology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, 14048-900 Ribeirao Preto, SP, Brazil;Department of Genetics, Molecular Immunogenetics Group, Faculty of Medicine of Ribeirao Preto, University of São Paulo, 14040-900 Ribeirao Preto, SP, Brazil;Aix-Marseille University, Marseille, France;Department of Medicine, Division of Clinical Immunology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, 14048-900 Ribeirao Preto, SP, Brazil;Faculty of Philosophy Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
关键词: Microarray;    mRNA;    microRNA;    Gestational diabetes mellitus;    Type 2 diabetes mellitus;    Type 1 diabetes mellitus;   
Others  :  1140640
DOI  :  10.1186/1756-0500-6-491
 received in 2013-06-23, accepted in 2013-11-15,  发布年份 2013
PDF
【 摘 要 】

Background

Regardless the regulatory function of microRNAs (miRNA), their differential expression pattern has been used to define miRNA signatures and to disclose disease biomarkers. To address the question of whether patients presenting the different types of diabetes mellitus could be distinguished on the basis of their miRNA and mRNA expression profiling, we obtained peripheral blood mononuclear cell (PBMC) RNAs from 7 type 1 (T1D), 7 type 2 (T2D), and 6 gestational diabetes (GDM) patients, which were hybridized to Agilent miRNA and mRNA microarrays. Data quantification and quality control were obtained using the Feature Extraction software, and data distribution was normalized using quantile function implemented in the Aroma light package. Differentially expressed miRNAs/mRNAs were identified using Rank products, comparing T1DxGDM, T2DxGDM and T1DxT2D. Hierarchical clustering was performed using the average linkage criterion with Pearson uncentered distance as metrics.

Results

The use of the same microarrays platform permitted the identification of sets of shared or specific miRNAs/mRNA interaction for each type of diabetes. Nine miRNAs (hsa-miR-126, hsa-miR-1307, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-144, hsa-miR-199a-5p, hsa-miR-27a, hsa-miR-29b, and hsa-miR-342-3p) were shared among T1D, T2D and GDM, and additional specific miRNAs were identified for T1D (20 miRNAs), T2D (14) and GDM (19) patients. ROC curves allowed the identification of specific and relevant (greater AUC values) miRNAs for each type of diabetes, including: i) hsa-miR-1274a, hsa-miR-1274b and hsa-let-7f for T1D; ii) hsa-miR-222, hsa-miR-30e and hsa-miR-140-3p for T2D, and iii) hsa-miR-181a and hsa-miR-1268 for GDM. Many of these miRNAs targeted mRNAs associated with diabetes pathogenesis.

Conclusions

These results indicate that PBMC can be used as reporter cells to characterize the miRNA expression profiling disclosed by the different diabetes mellitus manifestations. Shared miRNAs may characterize diabetes as a metabolic and inflammatory disorder, whereas specific miRNAs may represent biological markers for each type of diabetes, deserving further attention.

【 授权许可】

   
2013 Collares et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325070857707.pdf 1737KB PDF download
Figure 4. 88KB Image download
Figure 3. 55KB Image download
Figure 2. 93KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Artmann S, Jung K, Bleckmann A, Beissbarth T: Detection of simultaneous group effects in microRNA expression and related target gene sets. PLoS One 2012, 7:e38365.
  • [2]Liang Y, Ridzon D, Wong L, Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007, 8:166.
  • [3]Hezova R, Slaby O, Faltejskova P, Mikulkova Z, Buresova I, Raja KR, Hodek J, Ovesna J, Michalek J: MicroRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 2010, 260:70-74.
  • [4]Dai R, Zhang Y, Khan D, Heid B, Caudell D, Crasta O, Ahmed SA: Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 2010, 5:e14302.
  • [5]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91-105.
  • [6]Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet 2005, 37:495-500.
  • [7]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-D144.
  • [8]Zhang B, Farwell MA: microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med 2008, 12:3-21.
  • [9]Pauley KM, Cha S, Chan EK: MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009, 32:189-194.
  • [10]Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A, Dulak J: MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem 2011, 401:2051-2061.
  • [11]World Health Organization. http://www.idf.org/diabetesatlas webcite
  • [12]Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE: Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 1992, 267:5802-5810.
  • [13]Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M: A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432:226-230.
  • [14]Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R: MicroRNA-9 controls the expression of granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006, 281:26932-26942.
  • [15]El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E: MiR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008, 57:2708-2717.
  • [16]Tang X, Tang G, Ozcan S: Role of microRNAs in diabetes. Biochim Biophys Acta 2008, 1779:697-701.
  • [17]Tang X, Muniappan L, Tang G, Ozcan S: Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 2009, 15:287-293.
  • [18]Hennessy E, Clynes M, Jeppesen PB, O’Driscoll L: Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 2010, 396:457-462.
  • [19]Lynn FC: Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 2009, 20:452-459.
  • [20]Bang-Berthelsen CH, Pedersen L, Fløyel T, Hagedorn PH, Gylvin T, Pociot F: Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics 2011, 12:97.
  • [21]Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010, 107:810-817.
  • [22]Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011, 6:e22839.
  • [23]MirWalk. http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk webcite
  • [24]MiRanda. http://www.microrna.org/microrna/home.do webcite
  • [25]RNAhybrid. http://bibiserv.techfak.uni-bielefeld.de/rnahybrid webcite
  • [26]TargetScan. http://targetscan.org webcite
  • [27]Metz CE: Basic principles of ROC analysis. Semin Nucl Med 1978, 8:283-298.
  • [28]Griner PF, Mayewski RJ, Mushlin AI, Greenland P: Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann Intern Med 1981, 94:557-592.
  • [29]Collares CV, Evangelista AF, Xavier DJ, Takahashi P, Almeida R, Macedo C, Manoel-Caetano F, Foss MC, Foss-Freitas MC, Rassi DM, Sakamoto-Hojo ET, Passos GA, Donadi EA: Transcriptome meta-analysis of peripheral lymphomononuclear cells indicates that gestational diabetes is closer to type 1 diabetes than to type 2 diabetes mellitus. Mol Biol Rep 2013,  . in press
  • [30]Krützfeldt J, Stoffel M: MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 2006, 4:9-12.
  • [31]He A, Zhu L, Gupta N, Chang Y, Fang F: Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007, 21:2785-2794.
  • [32]Arner E, Mejhert N, Kulyté A, Balwierz PJ, Pachkov M, Cormont M, Lorente-Cebrián S, Ehrlund A, Laurencikiene J, Hedén P, Dahlman-Wright K, Tanti JF, Hayashizaki Y, Rydén M, Dahlman I, van Nimwegen E, Daub CO, Arner P: Adipose Tissue MicroRNAs as regulators of CCL2 production in human obesity. Diabetes 2012, 61:1986-1993.
  • [33]Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN: The endothelial- specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008, 15:261-271.
  • [34]Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ: Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012, 53:64-72.
  • [35]Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M: Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 2012, 60:290-299.
  • [36]Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R: MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 2007, 104:3432-3437.
  • [37]Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX, Zhu BY, Gao ZP, Tang CK, Yin WD, Zhang L, Liao DF: Changes in microRNA profile and effects of miR-320 in insulin-resistant 3T3–L1 adipocytes. Clin Exp Pharmacol Physiol 2009, 36:e32-e39.
  • [38]Zhao H, Guan J, Lee HM, Sui Y, He L, Siu JJ, Tse PP, Tong PC, Lai FM, Chan JC: Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 2010, 39:843-846.
  • [39]Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier D, McCarthy MI, Lindgren CM: Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 2010, 53:1099-1109.
  • [40]Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, Lim SC, Sum CF, Jeyaseelan K: Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012, 97:E2271-E2276.
  • [41]Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, Regazzi R: Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012, 61:1742-1751.
  • [42]Silva VA, Polesskaya A, Sousa TA, Corrêa VM, André ND, Reis RI, Kettelhut IC, Harel-Bellan A, De Lucca FL: Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011, 17:2228-2240.
  • [43]Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC: Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol 2012, 36:412-418.
  • [44]Ding S, Liang Y, Zhao M, Liang G, Long H, Zhao S, Wang Y, Yin H, Zhang P, Zhang Q, Lu Q: Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012, 64:2953-2963.
  • [45]Wang XS, Gong JN, Yu J, Wang F, Zhang XH, Yin XL, Tan ZQ, Luo ZM, Yang GH, Shen C, Zhang JW: MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia. Blood 2012, 119:4992-5004.
  • [46]Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H, Hong M, Jiang T, Jiang Q, Lu J, Huang X, Huang B: An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 2012, 26:769-777.
  • [47]Lin RJ, Xiao DW, Liao LD, Chen T, Xie ZF, Huang WZ, Wang WS, Jiang TF, Wu BL, Li EM, Xu LY: MiR-142-3p as a potential prognostic biomarker for esophageal squamous cell carcinoma. J Surg Oncol 2012, 105:175-182.
  • [48]Wu L, Cai C, Wang X, Liu M, Li X, Tang H: MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett 2011, 585:1322-1330.
  • [49]Li S, Moffett HF, Lu J, Werner L, Zhang H, Ritz J, Neuberg D, Wucherpfennig KW, Brown JR, Novina CD: MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One 2011, 6:e16956.
  • [50]Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK: Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer 2011, 56:211-216.
  • [51]Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K: Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006, 25:2537-2545.
  • [52]Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, Roberts LR, Schmittgen TD: Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 2008, 14:419-427.
  • [53]Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM: MicroRNA signatures in human ovarian cancer. Cancer Res 2007, 67:8699-8707.
  • [54]Yu T, Wang XY, Gong RG, Li A, Yang S, Cao YT, Wen YM, Wang CM, Yi XZ: The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res 2009, 28:64.
  • [55]Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ: Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 2010, 103:532-541.
  • [56]Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, Deliliers GL, Neri A: An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genomics 2008, 1:37.
  • [57]Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA: A miRNA signature of prion induced neurodegeneration. PLoS One 2008, 3:e3652.
  • [58]Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, Kyriazopoulou VE, Habeos IG: Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 2012, 7:e34872.
  • [59]Al-Quraishy S, Dkhil MA, Delic D, Abdel-Baki AA, Wunderlich F: Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to plasmodium chabaudi malaria. Parasitol Res 2012, 111:1093-1101.
  • [60]Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. Cell 2005, 120:635-647.
  • [61]Lee Y, Dutta A: The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007, 21:1025-1030.
  • [62]Frost RJ, Olson EN: Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 2011, 108:21075-21080.
  • [63]Schopman NC, Heynen S, Haasnoot J, Berkhout B: A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. RNA Biol 2010, 7:573-576.
  • [64]Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, Chen D, Xu J, Huo R, Dai J, Xia Y, Pan S, Hu Z, Sha J: Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One 2011, 6:e23925.
  • [65]Xie H, Lim B, Lodish HF: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58:1050-1057.
  • [66]Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM: MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007, 297:1901-1908.
  • [67]Pando R, Even-Zohar N, Shtaif B, Edry L, Shomron N, Phillip M, Gat-Yablonski G: MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1. J Nutr Biochem 2012, 23:1474-1481.
  • [68]Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004, 305:390-392.
  • [69]Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L: Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008, 22:1753-1757.
  • [70]Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, Stumvoll M, Blüher M: MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009, 4:e4699.
  • [71]Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Mitnala S, Shouche Y, Hardikar AA: The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets 2009, 1:137-147.
  • [72]Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu JX, Hu YN, Wu DM, Liu Y, Yan TT, Jing Q, Liu MF, Zhai QW: Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 2012, 55:2032-2043.
  • [73]Nielsen LB, Wang C, Sørensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A, Zhang CY, Pociot F, Mortensen HB: Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012, 2012:896362.
  • [74]Mir2disease. http://www.mir2disease.org webcite
  • [75]ArrayExpress. http://www.ebi.ac.uk/arrayexpress webcite
  • [76]R environment. http://www.r-project.org webcite
  • [77]Bolstad B, Irizarry R, Astrand M, Speed T: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [78]Gautier L, Cope L, Bolstad BM, Irizarry RA: affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20:307-315.
  • [79]Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006, 22:2825-2827.
  • [80]Huang JC, Morris QD, Frey BJ: Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 2007, 14:550-563.
  • [81]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [82]ROCR package. http://cran.r-project.org/web/packages/ROCR/index.html webcite
  文献评价指标  
  下载次数:13次 浏览次数:25次