期刊论文详细信息
Biotechnology for Biofuels
A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor
An Li2  Ya’nan Chu1  Xumin Wang1  Lufeng Ren1  Jun Yu1  Xiaoling Liu2  Jianbin Yan2  Lei Zhang2  Shuangxiu Wu1  Shizhong Li2 
[1] The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7 Beichen West Road, Chaoyang District, 100101, Beijing, China
[2] Institute of Nuclear and New Energy Technology, Tsinghua University, Tsinghua Garden, Haidian District, 100084, Beijing, China
关键词: Psychrobacter;    Anaerococcus;    DNA extraction;    Metagenomics;    Pyrosequencing;    Biogas production;    Solid-state fermentation;   
Others  :  798184
DOI  :  10.1186/1754-6834-6-3
 received in 2012-09-29, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities.

Results

To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis.

Conclusions

The identification of new bacterial genera and species involved in biogas production provides insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions.

【 授权许可】

   
2013 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706104150509.pdf 1146KB PDF download
Figure 6. 18KB Image download
Figure 5. 77KB Image download
Figure 4. 119KB Image download
Figure 3. 62KB Image download
Figure 2. 75KB Image download
Figure 1. 12KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Weiland P: Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotech 2003, 109:263-274.
  • [2]Yadvika , Santosh , Sreekrishnan TR, Kohli S, Rana V: Enhancement of biogas production from solid substrates using different techniques--a review. Bioresour Technol 2004, 95:1-10.
  • [3]Liu X, Wang W, Gao X, Zhou Y, Shen R: Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag 2012, 32:249-255.
  • [4]Demirel B, Scherer P: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 2008, 7:173-190.
  • [5]Ferry JG: Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 2011, 22:351-357.
  • [6]Bryan P, Tracy SWJ, Fast AG, Indurthi DC, Papoutsakis ET: Clostridia: the importance of their exceptionalsubstrate and metabolitediversity for biofuel and biorefineryapplications. 2011. [Current opinion in biotechnology] Available online 11 November 2011
  • [7]Schink B: Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol R 1997, 61:262.
  • [8]Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A: Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 2005, 7:1104-1115.
  • [9]Tang YQ, Shigematsu T, Morimura S, Kida K: Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 2005, 99:150-164.
  • [10]Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K: Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biot 2006, 72:401-415.
  • [11]Tang YQ, Fujimura Y, Shigematsu T, Morimura S, Kida K: Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater. J Biosci Bioeng 2007, 104:281-287.
  • [12]Klocke M, Mahnert P, Mundt K, Souidi K, Linke B: Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 2007, 30:139-151.
  • [13]Weiss A, Jerome V, Freitag R, Mayer HK: Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biot 2008, 81:163-173.
  • [14]Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B: Characterization of the methanogenic archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 2008, 31:190-205.
  • [15]Tang YQ, Shigematsu T, Ikbal , Morimura S, Kida K: The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 2004, 38:2537-2550.
  • [16]Sasaki K, Haruta S, Ueno Y, Ishii M, Igarashi Y: Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbiol Biot 2007, 75:941-952.
  • [17]Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F: Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 2011, 6:e14519.
  • [18]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [19]Rothberg JM, Leamon JH: The development and impact of 454 sequencing. Nat Biotechnol 2008, 26:1117-1124.
  • [20]Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O: The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 2008, 136:77-90.
  • [21]Simon C, Wiezer A, Strittmatter AW, Daniel R: Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microb 2009, 75:7519-7526.
  • [22]Abbai NS, Govender A, Shaik R, Pillay B: Pyrosequence analysis of unamplified and whole genome amplified DNA from hydrocarbon-contaminated groundwater. Mol Biotechnol 2012, 50:39-48.
  • [23]Krause L, Diaz NN, Edwards RA, Gartemann KH, Kromeke H, Neuweger H, Puhler A, Runte KJ, Schluter A, Stoye J: Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 2008, 136:91-101.
  • [24]Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J: Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 2008, 36:2230-2239.
  • [25]Krober M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehover P, Puhler A, Schluter A: Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 2009, 142:38-49.
  • [26]Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL: Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 2012, 5:41-56. BioMed Central Full Text
  • [27]Desai N, Antonopoulos D, Gilbert JA, Glass EM, Meyer F: From genomics to metagenomics. Curr Opin Biotechnol 2012, 23:72-76.
  • [28]Scholz MB, Lo CC, Chain PS: Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 2012, 23:9-15.
  • [29]Bergmann I, Mundt K, Sontag M, Baumstark I, Nettmann E, Klocke M: Influence of DNA isolation on Q-PCR-based quantification of methanogenic archaea in biogas fermenters. Syst Appl Microbiol 2010, 33:78-84.
  • [30]Hwang C, Ling F, Andersen GL, LeChevallier MW, Liu WT: Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms. Microbes and environments / JSME 2012, 27:9-18.
  • [31]Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yabuuchi E: Transfer of peptococcus-indolicus, peptococcus-asaccharolyticus, peptococcus-prevotii, and peptococcus-magnus to the genus peptostreptococcus and proposal of peptostreptococcus-tetradius Sp-Nov. Int J Syst Bacteriol 1983, 33:683-698.
  • [32]Murdoch DA: Gram-positive anaerobic cocci. Clin Microbiol Rev 1998, 11:81.
  • [33]Ezaki T, Kawamura Y, Li N, Li ZY, Zhao LC, Shu SE: Proposal of the genera anaerococcus gen. nov., peptoniphilus gen. nov and gallicola gen. nov for members of the genus peptostreptococcus. Int J Syst Evol Micr 2001, 51:1521-1528.
  • [34]Rodrigues DF, Jesus ED, Ayala-del-Rio HL, Pellizari VH, Gilichinsky D, Sepulveda-Torres L, Tiedje JM: Biogeography of two cold-adapted genera: psychrobacter and exiguobacterium. ISME J 2009, 3:658-665.
  • [35]Yoon JH, Lee CH, Kang SJ, Oh TK: Psychrobacter celer sp nov., isolated from sea water of the south Sea in Korea. Int J Syst Evol Micr 2005, 55:1885-1890.
  • [36]Yoon JH, Lee CH, Yeo SH, Oh TK: Psychrobacter aquimaris sp nov and Psychrobacter namhaensis sp nov., isolated from sea water of the South Sea in Korea. Int J Syst Evol Micr 2005, 55:1007-1013.
  • [37]Jung SY, Lee MH, Oh TK, Park YH, Yoon JH, Park’ YH: Psychrobacter cibarius sp nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Micr 2005, 55:577-582.
  • [38]Liao VHC, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu CW, Liao CM, Shen WC, Chang FJ: Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 2011, 123:20-29.
  • [39]Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T: Psychrobacter okhotskensis sp nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Micr 2003, 53:1985-1989.
  • [40]Bozal N, Montes MJ, Tudela E, Guinea J: Characterization of several psychrobacter strains isolated from Antarctic environments and description of psychrobacter luti sp nov and psychrobacter fozii sp nov. Int J Syst Evol Micr 2003, 53:1093-1100.
  • [41]Kampfer P, Albrecht A, Buczolits S, Busse HJ: Psychrobacter faecalis sp nov., a new species from a bioaerosol originating from pigeon faeces. Syst Appl Microbiol 2002, 25:31-36.
  • [42]Vela AI, Collins MD, Latre MV, Mateos A, Moreno MA, Hutson R, Dominguez L, Fernandez-Garayzabal JF: Psychrobacter pulmonis sp. nov., isolated from the lungs of lambs. Int J Syst Evol Microbiol 2003, 53:415-419.
  • [43]Yoon JH, Kang KH, Park YH: Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2003, 53:449-454.
  • [44]Joseph B, Ramteke PW, Thomas G: Cold active microbial lipases: Some hot issues and recent developments. Biotechnol Adv 2008, 26:457-470.
  • [45]Zhang J, Lin S, Zeng RY: Cloning, expression, and characterization of a cold-adapted lipase gene from an Antarctic deep-sea psychrotrophic bacterium, psychrobacter sp 7195. J Microbiol Biotechn 2007, 17:604-610.
  • [46]Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BKC: Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 1998, 4:241-250.
  • [47]Beaty PS, Wofford NQ, Mcinerney MJ: Separation of syntrophomonas-wolfei from methanospirillum-hungatii in syntrophic cocultures by using percoll gradients. Appl Environ Microb 1987, 53:1183-1185.
  • [48]Wofford NQ, Beaty PS, Mcinerney MJ: Preparation of cell-free-extracts and the enzymes involved in fatty-acid metabolism in syntrophomonas-wolfei. J Bacteriol 1986, 167:179-185.
  • [49]Mackie RI, Bryant MP: Metabolic-activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and Co2 to methanogenesis in cattle waste at 40-degrees-C and 60-degrees-C. Appl Environ Microb 1981, 41:1363-1373.
  • [50]Xu J, Chiang HC, Bjursell MK, Gordon JI: Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends Microbiol 2004, 12:21-28.
  • [51]Weimer PJ, Zeikus JG: Fermentation of cellulose and cellobiose by clostridium thermocellum in the absence of methanobacterium thermoautotrophicum. Appl Environ Microbiol 1977, 33:289-297.
  • [52]Beguin P, Millet J, Aubert JP: Cellulose degradation by clostridium thermocellum: from manure to molecular biology. FEMS Microbiol Lett 1992, 79:523-528.
  • [53]Sparling R, Islam R, Cicek N, Carere C, Chow H, Levin DB: Formate synthesis by clostridium thermocellum during anaerobic fermentation. Can J Microbiol 2006, 52:681-688.
  • [54]Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittimatter A, Miethke M, Buckel W, Hinderberger J, Li FL: The genome of clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 2008, 105:2128-2133.
  • [55]Barker HA: The production of caproic and butyric acids by the methane fermentation of ethyl alcohol. Arch Microbiol 1937, 8:415-421.
  • [56]Warnick TA: Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Micr 2002, 52:1155-1160.
  • [57]Baena S, Fardeau ML, Woo THS, Ollivier B, Labat M, Patel BKC: Phylogenetic relationships of three amino-acid-utilizing anaerobes, selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of thermanaerovibrio acidaminovorans gen. nov., comb. nov and anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 1999, 49:969-974.
  • [58]Plugge CM, Stams AJM: Arginine catabolism by thermanaerovibrio acidaminovorans. FEMS Microbiol Lett 2001, 195:259-262.
  • [59]Kandler O, Hippe H: Lack of peptidoglycan in the cell walls of methanosarcina barkeri. Arch Microbiol 1977, 113:57-60.
  • [60]Staley BF, de Los Reyes FL III, Barlaz MA: Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 2011, 77:2381-2391.
  • [61]Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR: The methanosarcina barkeri genome: comparative analysis with methanosarcina acetivorans and methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 2006, 188:7922-7931.
  • [62]Liu Y: Methanosarcinales. In Handbook of Hydrocarbon and Lipid Microbiology. Volume 1. Edited by Timmis KN. Berlin Heidelberg: Springer-Verlag; 2010.
  • [63]Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y: Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microb 2006, 72:1623-1630.
  • [64]Huang LN, Zhou H, Chen YQ, Luo S, Lan CY, Qu LH: Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Lett 2002, 214:235-240.
  • [65]Singh-Wissmann K, Ingram-Smith C, Miles RD, Ferry JG: Identification of essential glutamates in the acetate kinase from methanosarcina thermophila. J Bacteriol 1998, 180:1129-1134.
  • [66]Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P: Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain-reaction. Appl Environ Microb 1992, 58:2717-2722.
  • [67]Zhou JZ, Bruns MA, Tiedje JM: DNA recovery from soils of diverse composition. Appl Environ Microb 1996, 62:316-322.
  • [68]DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR: Community genomics among stratified microbial assemblages in the ocean’s interior. Science 2006, 311:496-503.
  • [69]Baker BJ, Banfield JF: Microbial communities in acid mine drainage. FEMS Microbiol Ecol 2003, 44:139-152.
  • [70]Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. Genome Res 2007, 17:377-386.
  • [71]Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37:D141-D145.
  • [72]Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28:33-36.
  文献评价指标  
  下载次数:118次 浏览次数:37次