期刊论文详细信息
BMC Biotechnology
A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs
Ashley R Long2  Catherine C O’Brien2  Ketan Malhotra2  Christine T Schwall2  Arlene D Albert2  Anthony Watts1  Nathan N Alder2 
[1] Department of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford, OX1 3QU, UK
[2] Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd, Storrs, Connecticut 06269, USA
关键词: Lipodisqs®;    Mitochondria;    Nanoscale model membranes;    Membrane proteins;    Amphipols;    Copolymer;    Styrene-maleic acid;   
Others  :  1123173
DOI  :  10.1186/1472-6750-13-41
 received in 2013-01-15, accepted in 2013-05-07,  发布年份 2013
PDF
【 摘 要 】

Background

The reconstitution of membrane proteins and complexes into nanoscale lipid bilayer structures has contributed significantly to biochemical and biophysical analyses. Current methods for performing such reconstitutions entail an initial detergent-mediated step to solubilize and isolate membrane proteins. Exposure to detergents, however, can destabilize many membrane proteins and result in a loss of function. Amphipathic copolymers have recently been used to stabilize membrane proteins and complexes following suitable detergent extraction. However, the ability of these copolymers to extract proteins directly from native lipid bilayers for subsequent reconstitution and characterization has not been explored.

Results

The styrene-maleic acid (SMA) copolymer effectively solubilized membranes of isolated mitochondria and extracted protein complexes. Membrane complexes were reconstituted into polymer-bound nanoscale discs along with endogenous lipids. Using respiratory Complex IV as a model, these particles were shown to maintain the enzymatic activity of multicomponent electron transporting complexes.

Conclusions

We report a novel process for reconstituting fully operational protein complexes directly from cellular membranes into nanoscale lipid bilayers using the SMA copolymer. This facile, single-step strategy obviates the requirement for detergents and yields membrane complexes suitable for structural and functional studies.

【 授权许可】

   
2013 Long et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150216015118905.pdf 1479KB PDF download
Figure 6. 84KB Image download
Figure 5. 82KB Image download
Figure 4. 39KB Image download
Figure 3. 79KB Image download
Figure 2. 39KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Sanders CR, Myers JK: Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 2004, 33:25-51.
  • [2]Wallin E, von Heijne G: Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998, 7(4):1029-1038.
  • [3]White SH, Ladokhin AS, Jayasinghe S, Hristova K: How membranes shape protein structure. J Biol Chem 2001, 276(35):32395-32398.
  • [4]Lee AG: How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 2004, 1666(1–2):62-87.
  • [5]Charalambous K, Miller D, Curnow P, Booth PJ: Lipid bilayer composition influences small multidrug transporters. BMC Biochem 2008, 9:31. BioMed Central Full Text
  • [6]Popot JL: Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 2010, 79:737-775.
  • [7]Helenius A, Simons K: Solubilization of membranes by detergents. Biochim Biophys Acta 1975, 415(1):29-79.
  • [8]Stubbs GW, Litman BJ: Effect of alterations in the amphipathic microenvironment on the conformational stability of bovine opsin. 1. Mechanism of solubilization of disk membranes by the nonionic detergent, octyl glucoside. Biochemistry 1978, 17(2):215-219.
  • [9]Bogdanov M, Xie J, Dowhan W: Lipid-protein interactions drive membrane protein topogenesis in accordance with the positive inside rule. J Biol Chem 2009, 284(15):9637-9641.
  • [10]Breyton C, Tribet C, Olive J, Dubacq JP, Popot JL: Dimer to monomer conversion of the cytochrome b6 f complex. Causes and consequences. J Biol Chem 1997, 272(35):21892-21900.
  • [11]Lee AG: Lipid-protein interactions. Biochem Soc Trans 2011, 39(3):761-766.
  • [12]Seddon AM, Curnow P, Booth PJ: Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 2004, 1666(1–2):105-117.
  • [13]Nath A, Atkins WM, Sligar SG: Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 2007, 46(8):2059-2069.
  • [14]Whiles JA, Deems R, Vold RR, Dennis EA: Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 2002, 30(6):431-442.
  • [15]Jamshad M, Lin YP, Knowles TJ, Parslow RA, Harris C, Wheatley M, Poyner DR, Bill RM, Thomas OR, Overduin M: Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem Soc Trans 2011, 39(3):813-818.
  • [16]Nath A, Trexler AJ, Koo P, Miranker AD, Atkins WM, Rhoades E: Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs. Methods Enzymol 2010, 472:89-117.
  • [17]Gluck JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW: Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 2009, 131(34):12060-12061.
  • [18]Wadsater M, Laursen T, Singha A, Hatzakis NS, Stamou D, Barker R, Mortensen K, Feidenhans’l R, Moller BL, Cardenas M: Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs. J Biol Chem 2012, 287(41):34596-34603.
  • [19]Tonge SR, Tighe BJ: Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 2001, 53(1):109-122.
  • [20]Popot JL, Althoff T, Bagnard D, Baneres JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ: Amphipols from A to Z. Annu Rev Biophys 2011, 40:379-408.
  • [21]Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flotenmeyer M, Giusti F, Gohon Y, Hong Q: Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 2003, 60(8):1559-1574.
  • [22]Tribet C, Audebert R, Popot JL: Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 1996, 93(26):15047-15050.
  • [23]Gorzelle BM, Hoffman AK, Keyes MH, Gray DN, Ray DG, Sanders CR: Amphipols can support the activity of a membrane enzyme. J Am Chem Soc 2002, 124(39):11594-11595.
  • [24]Althoff T, Mills DJ, Popot JL, Kuhlbrandt W: Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 2011, 30(22):4652-4664.
  • [25]Orwick MC, Judge PJ, Procek J, Lindholm L, Graziadei A, Engel A, Grobner G, Watts A: Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew Chem Int Ed Engl 2012, 51(19):4653-4657.
  • [26]Orwick-Rydmark M, Lovett JE, Graziadei A, Lindholm L, Hicks MR, Watts A: Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett 2012, 12(9):4687-4692.
  • [27]Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M: Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 2009, 131(22):7484-7485.
  • [28]Alder NN: Biogenesis of Lipids and Proteins within Biological Membranes. In The Structure of Biological Membranes. Third edition. Edited by Yeagle PL. New York: CRC Press; 2011:315-377.
  • [29]Baracca A, Sgarbi G, Solaini G, Lenaz G: Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta 2003, 1606(1–3):137-146.
  • [30]Floryk D, Houstek J: Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep 1999, 19(1):27-34.
  • [31]O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV Jr: Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 2003, 85(5):3350-3357.
  • [32]Reisinger V, Eichacker LA: Solubilization of membrane protein complexes for blue native PAGE. J Proteomics 2008, 71(3):277-283.
  • [33]Wittig I, Schagger H: Native electrophoretic techniques to identify protein-protein interactions. Proteomics 2009, 9(23):5214-5223.
  • [34]Nijtmans LG, Henderson NS, Holt IJ: Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 2002, 26(4):327-334.
  • [35]Wittig I, Braun HP, Schagger H: Blue native PAGE. Nat Protoc 2006, 1(1):418-428.
  • [36]Schagger H, von Jagow G: Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 1991, 199(2):223-231.
  • [37]Schagger H, Pfeiffer K: Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 2000, 19(8):1777-1783.
  • [38]Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S: The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 1996, 272(5265):1136-1144.
  • [39]Marechal A, Meunier B, Lee D, Orengo C, Rich PR: Yeast cytochrome c oxidase: a model system to study mitochondrial forms of the haem-copper oxidase superfamily. Biochim Biophys Acta 2012, 1817(4):620-628.
  • [40]Capaldi RA: Structure and function of cytochrome c oxidase. Annu Rev Biochem 1990, 59:569-596.
  • [41]Michel H, Behr J, Harrenga A, Kannt A: Cytochrome c oxidase: structure and spectroscopy. Annu Rev Biophys Biomol Struct 1998, 27:329-356.
  • [42]van Gelder BF: On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta 1966, 118(1):36-46.
  • [43]Monge C, Beraud N, Kuznetsov AV, Rostovtseva T, Sackett D, Schlattner U, Vendelin M, Saks VA: Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase. Mol Cell Biochem 2008, 318(1–2):147-165.
  • [44]Schagger H, Pfeiffer K: The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 2001, 276(41):37861-37867.
  • [45]Daum G, Bohni PC, Schatz G: Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 1982, 257(21):13028-13033.
  • [46]Zinser E, Daum G: Isolation and biochemical characterization of organelles from the yeast. Saccharomyces cerevisiae. Yeast 1995, 11(6):493-536.
  • [47]Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA: Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 2011, 50(2):98-115.
  • [48]Lemaire C, Dujardin G: Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria: activity measurement and subunit composition analysis. Methods Mol Biol 2008, 432:65-81.
  • [49]Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C: Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 2012, 7(6):1235-1246.
  • [50]Vaden DL, Gohil VM, Gu Z, Greenberg ML: Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Anal Biochem 2005, 338(1):162-164.
  • [51]Dittmer JC, Lester RL: A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1964, 15:126-127.
  文献评价指标  
  下载次数:69次 浏览次数:20次