期刊论文详细信息
Chemistry Central Journal
Boronic acids for sensing and other applications - a mini-review of papers published in 2013
Karel Lacina1  Petr Skládal2  Tony D James1 
[1] Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
[2] Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
关键词: Reactive oxygen species;    Fluoride;    Catechol;    Diol;    Detection of glucose;    Sensing;    Boronic acid;   
Others  :  1082189
DOI  :  10.1186/s13065-014-0060-5
 received in 2014-06-18, accepted in 2014-10-06,  发布年份 2014
PDF
【 摘 要 】

Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.

【 授权许可】

   
2014 Lacina et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141209153845586.pdf 3653KB PDF download
Figure 21. 51KB Image download
Figure 20. 27KB Image download
Figure 19. 37KB Image download
Figure 18. 20KB Image download
Figure 17. 31KB Image download
Figure 16. 21KB Image download
Figure 15. 68KB Image download
Figure 14. 37KB Image download
Figure 13. 23KB Image download
Figure 12. 51KB Image download
Figure 11. 32KB Image download
Figure 10. 72KB Image download
Figure 9. 32KB Image download
Figure 8. 35KB Image download
Figure 7. 21KB Image download
Figure 6. 52KB Image download
Figure 5. 59KB Image download
Figure 4. 18KB Image download
Figure 3. 58KB Image download
Figure 2. 22KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

【 参考文献 】
  • [1]Blangetti M, Rosso H, Prandi C, Deagostino A, Venturello P: Suzuki-Miyaura cross-coupling in acylation reactions. Scope and recent developments. Molecules 2013, 18(1):1188-1213.
  • [2]Kotha S, Lahiri K, Kashinath D: Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 2002, 58:9633-9695.
  • [3]Qiao JX, Lam PYS: Copper-promoted Carbon–Heteroatom bond cross-coupling with boronic acids and derivatives. Synthesis 2011, 6:829-856.
  • [4]Bull SD, Davidson MG, Van den Elsen JMH, Fossey JS, Jenkins ATA, Jiang YB, Kubo Y, Marken F, Sakurai K, Zhao J, James TD: Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc Chem Res 2013, 46(2):312-326.
  • [5]Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB: Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev 2013, 42(20):8032-8048.
  • [6]Whyte G, Vilar R, Woscholski R: Molecular recognition with boronic acids—applications in chemical biology. J Chem Biol 2013, 6(4):161-174.
  • [7]McClary CA, Taylor MS: Applications of organoboron compounds in carbohydrate chemistry and glycobiology: analysis, separation, protection, and activation. Carbohyd Res 2013, 381:112-122.
  • [8]Wang XJ, Xia N, Liu L: Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci 2013, 14(10):20890-20912.
  • [9]Guan Y, Zhang Y: Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 2013, 42(20):8106-8121.
  • [10]Hansen J, Christensen J: Recent advances in fluorescent arylboronic acids for glucose sensing. Biosensors 2013, 3(4):400-418.
  • [11]Yum K, McNicholas TP, Mu B, Strano MS: Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. J Diabetes Sci Technol 2013, 7(1):72-87.
  • [12]Liu L, Xia N, Xing Y, Deng DH: Boronic acid-based electrochemical sensors for detection of biomolecules. Int J Electrochem Sc 2013, 8(9):11161-11174.
  • [13]Heo YJ, Takeuchi S: Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv Healthc Mater 2013, 2(1):43-56.
  • [14]Tohda K: Development of optical sugar sensors as implantable devices for interstitial glucose monitoring. Bunseki Kagaku 2013, 62(10):903-914.
  • [15]Tharmaraj V, Pitchumani K: D-Glucose sensing by (E)-(4-((pyren-1-ylmethylene)amino)phenyl) boronic acid via a photoinduced electron transfer (PET) mechanism. Rsc Adv 2013, 3(29):11566-11570.
  • [16]Neupane LN, Lohani CR, Kim J, Lee K-H: A dual role of phenylboronic acid as a receptor for carbohydrates as well as a quencher for neighboring pyrene fluorophore. Tetrahedron 2013, 69(52):11057-11063.
  • [17]Springsteen G, Wang B: Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chem Commun 2001, 17:1608-1609.
  • [18]Wang ZJ, Lei HY, Feng LH: A facile channel for D-glucose detection in aqueous solution. Spectrochim Acta A 2013, 114:293-297.
  • [19]Huang YJ, Ouyang WJ, Wu X, Li Z, Fossey JS, James TD, Jiang YB: Glucose sensing via aggregation and the use of "Knock-Out" binding to improve selectivity. J Am Chem Soc 2013, 135(5):1700-1703.
  • [20]Teichert JF, Mazunin D, Bode JW: Chemical sensing of polyols with shapeshifting boronic acids as a self-contained sensor array. J Am Chem Soc 2013, 135(30):11314-11321.
  • [21]Bai HY, Sun Q, Tian HY, Qian JH, Zhang LY, Zhang WB: A long-wavelength fluorescent probe for saccharides based on boronic-acid receptor. Chinese J Chem 2013, 31(8):1095-1101.
  • [22]Amin R, Elfeky SA: Fluorescent sensor for bacterial recognition. Spectrochim Acta A 2013, 108:338-341.
  • [23]Hansen JS, Ficker M, Petersen JF, Christensen JB, Hoeg-Jensen T: Ortho-substituted fluorescent aryl monoboronic acid displays physiological binding of D-glucose. Tetrahedron Lett 2013, 54(14):1849-1852.
  • [24]Iwami Y, Yamamoto H, Kanekiyo Y: Multicolor saccharide-analysis sensor arrays based on boronic acid-containing thin films combined with various anionic dyes. Chem Lett 2013, 42(10):1214-1216.
  • [25]Karakus E, Ucuncu M, Eanes RC, Emrullahoglu M: The utilization of pH sensitive spirocyclic rhodamine dyes for monitoring D-fructose consumption during a fermentation process. New J Chem 2013, 37(9):2632-2635.
  • [26]Xu XD, Cheng H, Chen WH, Cheng SX, Zhuo RX, Zhang XZ: In situ recognition of cell-surface glycans and targeted imaging of cancer cells. Sci Rep-Uk 2013, 3:2679(1-8).
  • [27]Chu Y, Wang DZ, Wang K, Liu ZR, Weston B, Wang BH: Fluorescent conjugate of sLe(x)-selective bisboronic acid for imaging application. Bioorg Med Chem Lett 2013, 23(23):6307-6309.
  • [28]Chaicham A, Sahasithiwat S, Tuntulani T, Tomapatanaget B: Highly effective discrimination of catecholamine derivatives via FRET-on/off processes induced by the intermolecular assembly with two fluorescence sensors. Chem Commun 2013, 49(81):9287-9289.
  • [29]Jun EJ, Liu H, Choi JY, Lee JY, Yoon J: New fluorescent receptor composed of two imidazoliums, two pyrenes and a boronic acid for the recognition of DOPAC. Sensor Actuat B-Chem 2013, 176:611-617.
  • [30]Ptak T, Młynarz P, Dobosz A, Rydzewska A, Prokopowicz M: Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines. J Mol Struct 2013, 1040:59-64.
  • [31]Jun EJ, Xu ZC, Lee M, Yoon J: A ratiometric fluorescent probe for fluoride ions with a tridentate receptor of boronic acid and imidazolium. Tetrahedron Lett 2013, 54(22):2755-2758.
  • [32]Nishimura T, Xu SY, Jiang YB, Fossey JS, Sakurai K, Bull SD, James TD: A simple visual sensor with the potential for determining the concentration of fluoride in water at environmentally significant levels. Chem Commun 2013, 49(5):478-480.
  • [33]Wang XJ, Feng LH, Zhang LW: Reversible "off-on" fluorescent probe for anions based on a facile two-component ensemble. Dyes Pigments 2013, 97(2):318-323.
  • [34]Guan RF, Chen HH, Cao FX, Cao DX, Deng YL: Two fluorescence turn-on chemosensors for cyanide anions based on pyridine cation and the boronic acid moiety. Inorg Chem Commun 2013, 38:112-114.
  • [35]Jose DA, Elstner M, Schiller A: Allosteric indicator displacement enzyme assay for a cyanogenic glycoside. Chem-Eur J 2013, 19(43):14451-14457.
  • [36]Chen SJ, Chang JF, Cheng NJ, Yih JN, Chiu KC: Detection of saccharides with a fluorescent sensing device based on a gold film modified with 4-mercaptophenylboronic acid monolayer. Proc Spie 2013, 8812:881210-881210-9.
  • [37]Diltemiz SE, Ersoz A, Hur D, Kecili R, Say R: 4-Aminophenyl boronic acid modified gold platforms for influenza diagnosis. Mat Sci Eng C-Mater 2013, 33(2):824-830.
  • [38]Stephenson-Brown A, Wang HC, Iqbal P, Preece JA, Long YT, Fossey JS, James TD, Mendes PM: Glucose selective surface plasmon resonance-based bis-boronic acid sensor. Analyst 2013, 138(23):7140-7145.
  • [39]Arimori S, Ushiroda S, Peter LM, Jenkins ATA, James TD: A modular electrochemical sensor for saccharides. Chem Commun 2002, 20:2368-2369.
  • [40]Kong KV, Lam ZY, Lau WKO, Leong WK, Oivo M: A transition metal carbonyl probe for use in a highly specific and sensitive sers-based assay for glucose. J Am Chem Soc 2013, 135(48):18028-18031.
  • [41]Wang HC, Zhou H, Chen BQ, Mendes PM, Fossey JS, James TD, Long YT: A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations. Analyst 2013, 138(23):7146-7151.
  • [42]Li CC, Li XX, Luo XW, Qi HL: A novel electrochemical impedance spectroscopic sensor for determination of saccharide using phenylboronic acid as molecular recognition element. Chinese J Anal Chem 2013, 41(10):1537-1542.
  • [43]Hsieh KM, Lan KC, Hu WL, Chen MK, Jang LS, Wang MH: Glycated hemoglobin (HbA(1c)) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement. Biosens Bioelectron 2013, 49:450-456.
  • [44]Casalini S, Leonardi F, Cramer T, Biscarini F: Organic field-effect transistor for label-free dopamine sensing. Org Electron 2013, 14(1):156-163.
  • [45]Li BR, Chen CW, Yang WL, Lin TY, Pan CY, Chen YT: Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 2013, 45:252-259.
  • [46]Matsumoto A, Matsumoto H, Maeda Y, Miyahara Y: Simple and robust strategy for potentiometric detection of glucose using fluorinated phenylboronic acid self-assembled monolayer. Biochim Biophys Acta Gen Subj 2013, 1830(9):4359-4364.
  • [47]Hu Y, Jiang X, Zhang L, Fan J, Wu W: Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. Biosens Bioelectron 2013, 48:94-99.
  • [48]Ayyub OB, Ibrahim MB, Briber RM, Kofinas P: Self-assembled block copolymer photonic crystal for selective fructose detection. Biosens Bioelectron 2013, 46:124-129.
  • [49]Zhang LQ, Su FY, Buizer S, Lu HG, Gao WM, Tian YQ, Meldrum D: A dual sensor for real-time monitoring of glucose and oxygen. Biomaterials 2013, 34(38):9779-9788.
  • [50]James TD, Sandanayake KRAS, Shinkai S: A glucose-selective molecular fluorescence sensor. Angew Chem Int Edit 1994, 33(21):2207-2209.
  • [51]Li YY, Zhou SQ: A simple method to fabricate fluorescent glucose sensor based on dye-complexed microgels. Sensor Actuat B-Chem 2013, 177:792-799.
  • [52]Zhang CJ, Losego MD, Braun PV: Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater 2013, 25(15):3239-3250.
  • [53]Huang X, Li SQ, Davis E, Leduc C, Ravussin Y, Cai HG, Song B, Li D, Accili D, Leibel R, Wang Q, Lin Q: A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring. J Micromech Microeng 2013, 23(5):055020(1-10).
  • [54]Uddin KMA, Ye L: Fluorogenic affinity gels constructed from clickable boronic acids. J Appl Polym Sci 2013, 128(3):1527-1533.
  • [55]Savsunenko O, Matondo H, Franceschi-Messant S, Perez E, Popov AF, Rico-Lattes I, Lattes A, Karpichev Y: Functionalized vesicles based on amphiphilic boronic acids: a system for recognizing biologically important polyols. Langmuir 2013, 29(10):3207-3213.
  • [56]Plesu N, Kellenberger A, Taranu I, Taranu BO, Popa I: Impedimetric detection of dopamine on poly(3-aminophenylboronic acid) modified skeleton nickel electrodes. React Funct Polym 2013, 73(5):772-778.
  • [57]Ciftci H, Tamer U, Sen Teker M, Pekmez NO: An enzyme free potentiometric detection of glucose based on a conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiophene). Electrochim Acta 2013, 90:358-365.
  • [58]Wongsan W, Aeungmaitrepirom W, Chailapakul O, Ngeontae W, Tuntulani T: Bifunctional polymeric membrane ion selective electrodes using phenylboronic acid as a precursor of anionic sites and fluoride as an effector: a potentiometric sensor for sodium ion and an impedimetric sensor for fluoride ion. Electrochim Acta 2013, 111:234-241.
  • [59]Janczyk M, Kutyla-Olesiuk A, Ceto X, del Valle M, Ciosek P, Wroblewski W: Resolution of amino acid mixtures by an array of potentiometric sensors based on boronic acid derivative in a SIA flow system. Sensor Actuat B-Chem 2013, 189:179-186.
  • [60]Hong SJ, Lee LYS, So MH, Wong KY: A dopamine electrochemical sensor based on molecularly imprinted poly(acrylamidophenylboronic acid) film. Electroanal 2013, 25(4):1085-1094.
  • [61]Gu L, Jiang XY, Liang Y, Zhou TS, Shi GY: Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)-molecularly imprinted polymer composite. Analyst 2013, 138(18):5461-5469.
  • [62]Shen XT, Xu CG, Uddin KMA, Larsson PO, Ye L: Molecular recognition with colloidosomes enabled by imprinted polymer nanoparticles and fluorogenic boronic acid. J Mater Chem B 2013, 1(36):4612-4618.
  • [63]Diltemiz SE, Hur D, Kecili R, Ersoz A, Say R: New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors. Analyst 2013, 138(5):1558-1563.
  • [64]Xue F, Duan TR, Huang SY, Wang QH, Xue M, Meng ZH: A covalently imprinted photonic crystal for glucose sensing. J Nanomater 2013, 2013:530701(1-7).
  • [65]Lu CC, Li HY, Wang HY, Liu Z: Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis. Anal Chem 2013, 85(4):2361-2369.
  • [66]Yin XY, Dong JY, Wang HY, Li S, Fan LY, Cao CX: A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye. Electrophoresis 2013, 34(15):2185-2192.
  • [67]Dong JY, Li S, Wang HY, Meng QH, Fan LY, Xie HY, Cao C, Zhang W: Simple boric acid-based fluorescent focusing for sensing of glucose and glycoprotein via multipath moving supramolecular boundary electrophoresis chip. Anal Chem 2013, 85(12):5884-5891.
  • [68]Morais MPP, Marshall D, Flower SE, Caunt CJ, James TD, Williams RJ, Waterfield NR, van den Elsen JMH: Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis. Sci Rep-Uk 2013, 3:1437(1-7).
  • [69]Lerner MB, Kybert N, Mendoza R, Villechenon R, Lopez MAB, Johnson ATC: Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors. Appl Phys Lett 2013, 102(18):183113(1-4).
  • [70]Wang Q, Kaminska I, Niedziolka-Jonsson J, Opallo M, Li MS, Boukherroub R, Szunerits S: Sensitive sugar detection using 4-aminophenylboronic acid modified graphene. Biosens Bioelectron 2013, 50:331-337.
  • [71]Lawrence K, Nishimura T, Haffenden P, Mitchels JM, Sakurai K, Fossey JS, Bull SD, James TD, Marken F: Pyrene-anchored boronic acid receptors on carbon nanoparticle supports: fluxionality and pore effects. New J Chem 2013, 37(7):1883-1888.
  • [72]Qu ZB, Zhou XG, Gu L, Lan RM, Sun DD, Yu DJ, Shi G: Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem Commun 2013, 49(84):9830-9832.
  • [73]Gupta VK, Atar N, Yola ML, Eryilmaz M, Torul H, Tamer U, Boyaci IH, Ustundag Z: A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interf Sci 2013, 406:231-237.
  • [74]Pandya A, Sutariya PG, Menon SK: A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum. Analyst 2013, 138(8):2483-2490.
  • [75]Xia N, Zhang LP, Feng QQ, Deng DH, Sun XL, Liu L: Amplified voltammetric detection of tyrosinase and its activity with dopamine-gold nanoparticles as redox probes. Int J Electrochem Sc 2013, 8(4):5487-5495.
  • [76]Xia N, Zhang LP, Wang GF, Feng QQ, Liu L: Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles. Biosens Bioelectron 2013, 47:461-466.
  • [77]Nishiyabu R, Sugino Y, Kubo Y: White-light emitting boronate microparticles for potential use as reusable bright chemosensors in water. Chem Commun 2013, 49(84):9869-9871.
  • [78]Sun XL, Xu SY, Flower SE, Fossey JS, Qian XH, James TD: "Integrated" and "insulated" boronate-based fluorescent probes for the detection of hydrogen peroxide. Chem Commun 2013, 49(75):8311-8313.
  • [79]Sieracki NA, Gantner BN, Mao M, Horner JH, Ye RD, Malik AB, Newcomb ME, Bonini MG: Bioluminescent detection of peroxynitrite with a boronic acid-caged luciferin. Free Radical Bio Med 2013, 61:40-50.
  • [80]Chen ZJ, Ren W, Wright QE, Ai HW: Genetically encoded fluorescent probe for the selective detection of peroxynitrite. J Am Chem Soc 2013, 135(40):14940-14943.
  • [81]Wang Q, Liu C, Chang JJ, Lu Y, He S, Zhao LC, Zeng XS: Novel water soluble styrylquinolinium boronic acid as a ratiometric reagent for the rapid detection of hypochlorite ion. Dyes Pigments 2013, 99(3):733-739.
  • [82]Lacina K, Skládal P: Ferroceneboronic acid for the electrochemical probing of interactions involving sugars. Electrochim Acta 2011, 56(27):10246-10252.
  • [83]Xia N, Wang XJ, Deng DH, Wang GF, Zhai HY, Li SJ: Label-free electrochemical sensor for MicroRNAs detection with ferroceneboronic acids as redox probes. Int J Electrochem Sc 2013, 8(7):9714-9722.
  • [84]Li J, Sun YQ, Wei YM, Zheng JB: Phenylboronic acid and dopamine as probe set for electrochemical detection of saccharides. Chinese Chem Lett 2013, 24(4):291-294.
  • [85]Wang LF, Dai CF, Burroughs SK, Wang SML, Wang BH: Arylboronic acid chemistry under electrospray conditions. Chem-Eur J 2013, 19(23):7587-7594.
  • [86]Petsalakis ID, Theodorakopoulos G: Boronic acid sensors for saccharides: a theoretical study. Chem Phys Lett 2013, 586:111-115.
  • [87]Collins BE, Metola P, Anslyn EV: On the rate of boronate ester formation in ortho-aminomethyl-functionalised phenyl boronic acids. Supramol Chem 2013, 25(2):79-86.
  • [88]Ooyama Y, Uenaka K, Matsugasako A, Harima Y, Ohshita J: Molecular design and synthesis of fluorescence PET (photo-induced electron transfer) sensors for detection of water in organic solvents. Rsc Adv 2013, 3(45):23255-23263.
  • [89]Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T: Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat Chem 2013, 5(7):613-620.
  • [90]Kim DM, Shim YB: Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. Anal Chem 2013, 85(13):6536-6543.
  • [91]Huang Y, Wang W, Li Z, Qin X, Bu L, Tang Z, Fu YC, Ma M, Xie Q, Yao S, Hu J: Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing. Biosens Bioelectron 2013, 44:41-47.
  • [92]Song LJ, Zhao J, Luan SF, Ma J, Liu JC, Xu XD, Yin J: Fabrication of a detection platform with boronic-acid-containing zwitterionic polymer brush. Acs Appl Mater Inter 2013, 5(24):13207-13215.
  • [93]Abdellaoui S, Corgier BC, Mandon CA, Doumeche B, Marquette CA, Blum LJ: Biomolecules immobilization using the aryl diazonium electrografting. Electroanal 2013, 25(3):671-684.
  • [94]Şenel M, Dervisevic M, Çevik E: A novel amperometric glucose biosensor based on reconstitution of glucose oxidase on thiophene-3-boronic acid polymer layer. Curr Appl Phys 2013, 13(7):1199-1204.
  • [95]Crich SG, Alberti D, Szabo I, Aime S, Djanashvili K: MRI visualization of melanoma cells by targeting overexpressed sialic acid with a GdIII-dota-en-pba imaging reporter. Angew Chem Int Edit 2013, 52(4):1161-1164.
  • [96]Clevenger KD, Wu R, Er JAV, Liu DL, Fast W: Rational design of a transition state analogue with picomolar affinity for pseudomonas aeruginosa PvdQ, a siderophore biosynthetic enzyme. ACS Chem Biol 2013, 8(10):2192-2200.
  • [97]Tickell DA, Mahon MF, Bull SD, James TD: A simple protocol for NMR analysis of the enantiomeric purity of chiral hydroxylamines. Org Lett 2013, 15(4):860-863.
  • [98]Lee S, Lee KM, Lee M, Yoon J: Polydiacetylenes bearing boronic acid groups as colorimetric and fluorescence sensors for cationic surfactants. Acs Appl Mater Inter 2013, 5(11):4521-4526.
  文献评价指标  
  下载次数:200次 浏览次数:26次