期刊论文详细信息
Chemistry Central Journal
Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles
Rachel Benoit1  Kevin J Wilkinson1  Sébastien Sauvé1 
[1] Department of Chemistry, University of Montreal, Succ. Centre-Ville, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
关键词: Contaminated soils;    Nanosilver;    Nanoparticles;    Ion selective electrode;    Environmental fate;    Complexation;    Chemical speciation;   
Others  :  787918
DOI  :  10.1186/1752-153X-7-75
 received in 2013-02-15, accepted in 2013-04-16,  发布年份 2013
PDF
【 摘 要 】

Background

Knowledge about silver nanoparticles in soils is limited even if soils are a critical pathway for their environmental fate. In this paper, speciation results have been acquired using a silver ion selective electrode in three different soils.

Results

Soil organic matter and pH were the most important soil properties controlling the occurrence of silver ions in soils. In acidic soils, more free silver ions are available while in the presence of organic matter, ions were tightly bound in complexes. The evolution of the chemical speciation of the silver nanoparticles in soils was followed over six months.

Conclusion

During the first few hours, there appeared to be a strong sorption of the silver with soil ligands, whereas over time, silver ions were released, the final concentration being approximately 10 times higher than at the beginning. Ag release was associated with either the oxidation of the nanoparticles or a dissociation of adsorbed silver from the soil surfaces.

【 授权许可】

   
2013 Benoit et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702215718750.pdf 848KB PDF download
Figure 5. 73KB Image download
Figure 4. 39KB Image download
Figure 3. 43KB Image download
Figure 2. 46KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]The Project on Emerging Nanotechnologies: The Project on Emerging Nanotechnologies. http://www.nanotechproject.org/inventories/consumer/analysis_draft/ webcite, consulted August 28,2012
  • [2]Abbey DE, Petersen F, Mills PK, Beeson WL: Long-term ambient concentrations of total suspended particulates, ozone, and sulfur dioxide and respiratory symptoms in a nonsmoking population. Arch Environ Health 1993, 48(1):33-46.
  • [3]Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D: Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3(2):109-U178.
  • [4]Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D: Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 2009, 393(1):81-95.
  • [5]Mueller NC, Nowack B: Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008, 42(12):4447-4453.
  • [6]Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin LY: An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 2010, 39(6):1954-1965.
  • [7]Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P: The release of nanosilver from consumer products used in the home. J Environ Qual 2010, 39(6):1875-1882.
  • [8]Benn TM, Westerhoff P: Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 2008, 42(11):4133-4139.
  • [9]Liu JY, Hurt RH: Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 2010, 44(6):2169-2175.
  • [10]Geranio L, Heuberger M, Nowack B: The behavior of silver nanotextiles during washing. Environ Sci Technol 2009, 43(21):8113-8118.
  • [11]Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Steevens JA: Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 2010, 44(24):9571-9577.
  • [12]Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R: Toxicity of silver nanoparticles to chlamydomonas reinhardtii. Environ Sci Technol 2008, 42(23):8959-8964.
  • [13]Coutris C, Hertel-Aas T, Lapied E, Joner EJ, Oughton DH: Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6(2):186-195.
  • [14]Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM: Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Amer J 2011, 75(2):365-377.
  • [15]Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S: Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 2012, 31(8):1679-1692.
  • [16]J-y R, Sim SJ, Yi J, Park k, Chung k, Ryu D-y, Choi J: Ecotoxicity of silver nanoparticles on the soil nematode caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 2009, 43(10):3933-3940.
  • [17]Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D: Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Amer J 2012, 76(3):891-902.
  • [18]Ratte HT: Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 1999, 18(1):89-108.
  • [19]Fortin C, Campbell PGC: Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ Sci Technol 2001, 35(11):2214-2218.
  • [20]Lindsay WL: Chemical equilibria in soils. New York: John Wiley and Sons; 1979.
  • [21]VandeVoort AR, Arai Y, Sparks DL: Environmental chemistry of silver in soils:current and historic persective. In Advances in Agronomy. San Diego: Elsevier Academic Press Inc; 2012:59-90. Volume 114.
  • [22]Jacobson AR, McBride MB, Baveye P, Steenhuis TS: Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci Total Environ 2005, 345(1–3):191-205.
  • [23]Coutris C, Joner EJ, Oughton DH: Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 2012, 420:327-333.
  • [24]Rachou J, Gagnon C, Sauvé S: Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ Chem 2007, 4(2):90-97.
  • [25]Sauvé S, McBride MB, Hendershot WH: Ion-selective electrode measurements of copper(II) activity in contaminated soils. Arch Environ Contam Toxicol 1995, 29(3):373-379.
  • [26]Tiessen H, Moir JO: Total and organic carbon. In Soil sampling and methods analysis. United States of America: Lewis Publishers; 1993:187-191.
  • [27]Hendershot WH, Lalande H, Duquette M: Ion exchange and exchangeable cations. In Soil sampling and methods analysis. Second edition. United States of America: Taylor & Francis Group; 2008:197-206.
  • [28]Hendershot WH, Lalande H, Duquette M, Hendershot WH, Lalande H, Duquette M: Soil reaction and exchangeable acidity. In Soil sampling and methods analysis. Second edition. United States of America: Taylor & Francis Group; 2008:173-178.
  • [29]Kroetsch D, Wang C: Particle size distribution. In Soil Sampling and methods analysis. Edited by Gregorich MRCaEG. United States of America: Taylor & Francis Group; 2008:713-725.
  • [30]Peulen T-O, Wilkinson KJ: Diffusion of Nanoparticles in a Biofilm. Environ Sci Technol 2011, 45(8):3367-3373.
  • [31]Sikora FJ, Stevenson FJ: Silver complexation by humic substances-Conditional stability-Constants and nature of reactive sites. Geoderma 1988, 42(3–4):353-363.
  • [32]Jones KC, Davies BE, Peterson PJ: Silver in welsh soils-physical and chemical distribution studies. Geoderma 1986, 37(2):157-174.
  文献评价指标  
  下载次数:113次 浏览次数:112次