期刊论文详细信息
BMC Biotechnology
Characterization of a modified ROCK2 protein that allows use of N6-ATP analogs for the identification of novel substrates
Michael P Scheid1  R Montgomery Gill1  Amber L Couzens2 
[1]Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada
[2]Current Address: Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
关键词: Cell signaling;    Chemical engineering;    Protein kinase;    ROCK2;   
Others  :  834987
DOI  :  10.1186/1472-6750-14-2
 received in 2013-09-04, accepted in 2014-01-07,  发布年份 2014
PDF
【 摘 要 】

Background

The Rho-associated coiled-coil kinase-2 (ROCK2) is an important signaling transducer in the transmission of extracellular signals effecting organization of the actin cytoskeleton. ROCK2 has been implicated in numerous pathologies and the current focus is on understanding the molecular events that couple ROCK2 activity to biological function. To aid in the search for new ROCK2 substrates, we have developed an analog-sensitive (AS) ROCK2 protein that allows the use of selective ATP analogs that are not efficiently utilized by other protein kinases.

Results

The analog sensitive protein, M160A ROCK2, was highly active and could phosphorylate proteins from a cellular homogenate with γ32P-N6 (benzyl)ATP. We show the utility of this approach by identifying a putative ROCK2 substrate, elongation initiation factor-1-α1. We further show that the major site of ROCK2 phosphorylation of EIF1α1 is Thr432.

Conclusions

Our work demonstrates that AS-ROCK2 could be useful in a systematic proteomic approach for identifying novel ROCK2 substrates.

【 授权许可】

   
2014 Couzens et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715095752503.pdf 860KB PDF download
Figure 4. 75KB Image download
Figure 3. 88KB Image download
Figure 2. 90KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Riento K, Ridley AJ: Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003, 4(6):446-456.
  • [2]Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K: The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 1999, 274(45):32418-32424.
  • [3]Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, et al.: The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 1996, 15(8):1885-1893.
  • [4]Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K: Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999, 147(5):1023-1038.
  • [5]Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F: Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3 T3 fibroblasts. J Cell Biol 2000, 150(4):797-806.
  • [6]Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S: Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 1998, 140(3):647-657.
  • [7]Sumi T, Matsumoto K, Nakamura T: Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 2001, 276(1):670-676.
  • [8]Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S: Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999, 285(5429):895-898.
  • [9]Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM, Marshall CJ, Olson MF: Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 2004, 64(24):8994-9001.
  • [10]Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG: The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol 2008, 33(3):585-593.
  • [11]Loirand G, Guerin P, Pacaud P: Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006, 98(3):322-334.
  • [12]Takeda K, Ichiki T, Tokunou T, Iino N, Fujii S, Kitabatake A, Shimokawa H, Takeshita A: Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol 2001, 21(5):868-873.
  • [13]Kawamura H, Yokote K, Asaumi S, Kobayashi K, Fujimoto M, Maezawa Y, Saito Y, Mori S: High glucose-induced upregulation of osteopontin is mediated via Rho/Rho kinase pathway in cultured rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2004, 24(2):276-281.
  • [14]Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K: Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996, 271(34):20246-20249.
  • [15]Pidoux G, Tasken K: Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. J Mol Endocrinol 2010, 5:271-284.
  • [16]Elphick LM, Lee SE, Gouverneur V, Mann DJ: Using chemical genetics and ATP analogues to dissect protein kinase function. ACS Chem Biol 2007, 2(5):299-314.
  • [17]Shah K, Liu Y, Deirmengian C, Shokat KM: Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci USA 1997, 94(8):3565-3570.
  • [18]Habelhah H, Shah K, Huang L, Burlingame AL, Shokat KM, Ronai Z: Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J Biol Chem 2001, 276(21):18090-18095.
  • [19]Eblen ST, Kumar NV, Shah K, Henderson MJ, Watts CK, Shokat KM, Weber MJ: Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J Biol Chem 2003, 278(17):14926-14935.
  • [20]Liu Y, Shah K, Yang F, Witucki L, Shokat KM: Engineering Src family protein kinases with unnatural nucleotide specificity. Chem Biol 1998, 5(2):91-101.
  • [21]Couzens AL, Saridakis V, Scheid MP: The hydrophobic motif of ROCK2 requires association with the N-terminal extension for kinase activity. Biochem J 2009, 419(1):141-148.
  • [22]Riis B, Rattan SI, Clark BF, Merrick WC: Eukaryotic protein elongation factors. Trends Biochem Sci 1990, 15(11):420-424.
  • [23]Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J: Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 1990, 347(6292):494-496.
  • [24]Ohta K, Toriyama M, Miyazaki M, Murofushi H, Hosoda S, Endo S, Sakai H: The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. J Biol Chem 1990, 265(6):3240-3247.
  • [25]Lau J, Castelli LA, Lin EC, Macaulay SL: Identification of elongation factor 1alpha as a potential associated binding partner for Akt2. Mol Cell Biochem 2006, 286(1–2):17-22.
  • [26]Pecorari L, Marin O, Silvestri C, Candini O, Rossi E, Guerzoni C, Cattelani S, Mariani SA, Corradini F, Ferrari-Amorotti G, et al.: Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility. Mol Cancer 2009, 8:58. BioMed Central Full Text
  • [27]Izawa T, Fukata Y, Kimura T, Iwamatsu A, Dohi K, Kaibuchi K: Elongation factor-1 alpha is a novel substrate of rho-associated kinase. Biochem Biophys Res Commun 2000, 278(1):72-78.
  • [28]Liu G, Tang J, Edmonds BT, Murray J, Levin S, Condeelis J: F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol 1996, 135(4):953-963.
  • [29]Amiri A, Noei F, Jeganathan S, Kulkarni G, Pinke DE, Lee JM: eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration. Oncogene 2007, 26(21):3027-3040.
  • [30]Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, et al.: A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS ONE 2010, 5(1):e8704.
  • [31]Blethrow JD, Glavy JS, Morgan DO, Shokat KM: Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci USA 2008, 105(5):1442-1447.
  文献评价指标  
  下载次数:43次 浏览次数:17次