期刊论文详细信息
Biological Procedures Online
Modified protocol for in vivo imaging of wild-type mouse retina with customized miniature spectral domain optical coherence tomography (SD-OCT) device
Lee R Ferguson1  Sankarathi Balaiya1  Sandeep Grover1  Kakarla V Chalam1 
[1] Department of Ophthalmology, University of Florida College of Medicine, 580 W 8th Street, Tower 2, 3rd floor, Jacksonville, FL 32209, USA
关键词: Mouse;    Retinal imaging;    Customized;    Spectral domain optical coherence tomography;   
Others  :  793174
DOI  :  10.1186/1480-9222-14-9
 received in 2012-07-11, accepted in 2012-10-06,  发布年份 2012
PDF
【 摘 要 】

This protocol outlines and evaluates a modified scanning procedure for a customized spectral domain optical coherence tomography (SD-OCT) imaging apparatus within the wild-type C57Bl/6 mouse posterior segment. This modified protocol allows for the capture of a 50 degree field of view spanning 3 mm by 3 mm perimeter with the optic disc as the central point. By utilizing this scanning protocol a more reliable measurement of retinal thickness can be achieved outside the fluctuating region of the optic disc. This protocol, when applied to this high resolution device, enables non-invasive in vivo histological imaging and biometric assessment of the various layers of the rodent posterior segment within a 20 – 30 min procedural time-frame. This protocol could establish a standardized method for evaluating morphological changes, with this commercial SDOCT device, when assessing longitudinal disease pathophysiology and treatment response in mouse models for future vision science research.

【 授权许可】

   
2012 Ferguson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705044438510.pdf 2155KB PDF download
Figure 5. 136KB Image download
Figure 4. 124KB Image download
Figure 3. 107KB Image download
Figure 2. 45KB Image download
Figure 1. 126KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA: Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994, 35(1):101-111.
  • [2]Kern TS, Engerman RL: A mouse model of diabetic retinopathy. Arch Ophthalmol 1996, 114(8):986-990.
  • [3]Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern TS, Chen DF: Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 2005, 46(11):4281-4287.
  • [4]Zheng L, Du Y, Miller C, Gubitosi-Klug RA, Ball S, Berkowitz BA, Kern TS: Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia 2007, 50(9):1987-1996.
  • [5]Aguilar E, Dorrell MI, Friedlander D, Jacobson RA, Johnson A, Marchetti V, Moreno SK, Ritter MR, Friedlander M: Chapter 6. Ocular models of angiogenesis. In Methods Enzymol Volume 444. Edited by Cheresh DA. New York: Elsevier Inc; 2008:115-158.
  • [6]Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002, 8(6):607-612.
  • [7]Karan G, Lillo C, Yang Z, Cameron DJ, Locke KG, Zhao Y, Thirumalaichary S, Li C, Birch DG, Vollmer-Snarr HR, Williams DS, Zhang K: Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005, 102(11):4164-4169.
  • [8]Pang JJ, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J, Noorwez SM, Malhotra R, McDowell JH, Kaushal S, Hauswirth WW, Nusinowitz S, Thompson DA, Heckenlively JR: Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 2005, 11:152-162.
  • [9]Pittler SJ, Baehr W: Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 1991, 88(19):8322-8326.
  • [10]Radu RA, Mata NL, Bagla A, Travis GH: Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt's macular degeneration. Proc Natl Acad Sci U S A 2004, 101(16):5928-5933.
  • [11]Weber BH, Schrewe H, Molday LL, Gehrig A, White KL, Seeliger MW, Jaissle GB, Friedburg C, Tamm E, Molday RS: Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci U S A 2002, 99(9):6222-6227.
  • [12]Alam S, Zawadzki RJ, Choi S, Gerth C, Park SS, Morse L, Werner JS: Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging. Ophthalmology 2006, 113(8):1425-1431.
  • [13]Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS: Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005, 112(10):1734-1746.
  • [14]Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, Grimm C, Wenzel A, Remé CE, van de Pavert SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW: Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 2009, 4(10):e7507.
  • [15]Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, Humphries P, Redmond TM, Seeliger MW, Fischer MD: Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 2009, 50(12):5888-5895.
  • [16]Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A, Bursell SE, Song QH, Lem J, Duker JS, Schuman JS, Fujimoto JG: Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2006, 47(12):5522-5528.
  • [17]Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S: Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 2008, 49(7):3095-3099.
  • [18]Pennesi ME, Michaels KV, Magee SS, Maricle A, Davin SP, Garg AK, Gale MJ, Tu DC, Wen Y, Erker LR, Francis PJ: Long-Term Characterization of Retinal Degeneration in rd1 and rd10 Mice Using Spectral Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2012, 10;53(8):4644-4656.
  • [19]Kagemann L, Wollstein G, Ishikawa H, Nadler Z, Sigal IA, Folio LS, Schuman JS: Visualization of the conventional outflow pathway in the living human eye. Ophthalmology 2012, 119(8):1563-1568.
  • [20]Fukuchi T, Takahashi K, Shou K, Matsumura M: Optical coherence tomography (OCT) findings in normal retina and laser-induced choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 2001, 239(1):41-46. Erratum in: Graefes Arch Clin Exp Ophthalmol 2001, 239(5):387
  • [21]Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA: In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2007, 48(4):1808-1814.
  文献评价指标  
  下载次数:68次 浏览次数:10次