| Biological Procedures Online | |
| Modified protocol for in vivo imaging of wild-type mouse retina with customized miniature spectral domain optical coherence tomography (SD-OCT) device | |
| Lee R Ferguson1  Sankarathi Balaiya1  Sandeep Grover1  Kakarla V Chalam1  | |
| [1] Department of Ophthalmology, University of Florida College of Medicine, 580 W 8th Street, Tower 2, 3rd floor, Jacksonville, FL 32209, USA | |
| 关键词: Mouse; Retinal imaging; Customized; Spectral domain optical coherence tomography; | |
| Others : 793174 DOI : 10.1186/1480-9222-14-9 |
|
| received in 2012-07-11, accepted in 2012-10-06, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
This protocol outlines and evaluates a modified scanning procedure for a customized spectral domain optical coherence tomography (SD-OCT) imaging apparatus within the wild-type C57Bl/6 mouse posterior segment. This modified protocol allows for the capture of a 50 degree field of view spanning 3 mm by 3 mm perimeter with the optic disc as the central point. By utilizing this scanning protocol a more reliable measurement of retinal thickness can be achieved outside the fluctuating region of the optic disc. This protocol, when applied to this high resolution device, enables non-invasive in vivo histological imaging and biometric assessment of the various layers of the rodent posterior segment within a 20 – 30 min procedural time-frame. This protocol could establish a standardized method for evaluating morphological changes, with this commercial SDOCT device, when assessing longitudinal disease pathophysiology and treatment response in mouse models for future vision science research.
【 授权许可】
2012 Ferguson et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140705044438510.pdf | 2155KB | ||
| Figure 5. | 136KB | Image | |
| Figure 4. | 124KB | Image | |
| Figure 3. | 107KB | Image | |
| Figure 2. | 45KB | Image | |
| Figure 1. | 126KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA: Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994, 35(1):101-111.
- [2]Kern TS, Engerman RL: A mouse model of diabetic retinopathy. Arch Ophthalmol 1996, 114(8):986-990.
- [3]Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern TS, Chen DF: Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 2005, 46(11):4281-4287.
- [4]Zheng L, Du Y, Miller C, Gubitosi-Klug RA, Ball S, Berkowitz BA, Kern TS: Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia 2007, 50(9):1987-1996.
- [5]Aguilar E, Dorrell MI, Friedlander D, Jacobson RA, Johnson A, Marchetti V, Moreno SK, Ritter MR, Friedlander M: Chapter 6. Ocular models of angiogenesis. In Methods Enzymol Volume 444. Edited by Cheresh DA. New York: Elsevier Inc; 2008:115-158.
- [6]Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002, 8(6):607-612.
- [7]Karan G, Lillo C, Yang Z, Cameron DJ, Locke KG, Zhao Y, Thirumalaichary S, Li C, Birch DG, Vollmer-Snarr HR, Williams DS, Zhang K: Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005, 102(11):4164-4169.
- [8]Pang JJ, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J, Noorwez SM, Malhotra R, McDowell JH, Kaushal S, Hauswirth WW, Nusinowitz S, Thompson DA, Heckenlively JR: Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 2005, 11:152-162.
- [9]Pittler SJ, Baehr W: Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 1991, 88(19):8322-8326.
- [10]Radu RA, Mata NL, Bagla A, Travis GH: Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt's macular degeneration. Proc Natl Acad Sci U S A 2004, 101(16):5928-5933.
- [11]Weber BH, Schrewe H, Molday LL, Gehrig A, White KL, Seeliger MW, Jaissle GB, Friedburg C, Tamm E, Molday RS: Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci U S A 2002, 99(9):6222-6227.
- [12]Alam S, Zawadzki RJ, Choi S, Gerth C, Park SS, Morse L, Werner JS: Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging. Ophthalmology 2006, 113(8):1425-1431.
- [13]Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS: Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005, 112(10):1734-1746.
- [14]Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, Grimm C, Wenzel A, Remé CE, van de Pavert SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW: Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 2009, 4(10):e7507.
- [15]Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, Humphries P, Redmond TM, Seeliger MW, Fischer MD: Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 2009, 50(12):5888-5895.
- [16]Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A, Bursell SE, Song QH, Lem J, Duker JS, Schuman JS, Fujimoto JG: Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2006, 47(12):5522-5528.
- [17]Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S: Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 2008, 49(7):3095-3099.
- [18]Pennesi ME, Michaels KV, Magee SS, Maricle A, Davin SP, Garg AK, Gale MJ, Tu DC, Wen Y, Erker LR, Francis PJ: Long-Term Characterization of Retinal Degeneration in rd1 and rd10 Mice Using Spectral Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2012, 10;53(8):4644-4656.
- [19]Kagemann L, Wollstein G, Ishikawa H, Nadler Z, Sigal IA, Folio LS, Schuman JS: Visualization of the conventional outflow pathway in the living human eye. Ophthalmology 2012, 119(8):1563-1568.
- [20]Fukuchi T, Takahashi K, Shou K, Matsumura M: Optical coherence tomography (OCT) findings in normal retina and laser-induced choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 2001, 239(1):41-46. Erratum in: Graefes Arch Clin Exp Ophthalmol 2001, 239(5):387
- [21]Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA: In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2007, 48(4):1808-1814.
PDF