期刊论文详细信息
Biology of Sex Differences
Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice
Wilma T Steegenga3  Mona Mischke3  Carolien Lute3  Mark V Boekschoten3  Maurien GM Pruis5  Agnes Lendvai5  Henkjan J Verkade5  Jos Boekhorst2  Harro M Timmerman2  Torsten Plösch1  Michael Müller4 
[1] Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
[2] NIZO food Research BV, Ede, The Netherlands
[3] Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
[4] Norwich Medical School, University of East Anglia, Norwich, UK
[5] Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
关键词: Prepubescent;    Chromosomes;    Epigenetics;    DNA methylation;    Histone modification;    Microbiota;    Gene expression;    Sexually dimorphism;    Colon;    Small intestine;   
Others  :  1084165
DOI  :  10.1186/s13293-014-0011-9
 received in 2014-05-20, accepted in 2014-08-20,  发布年份 2014
PDF
【 摘 要 】

Background

There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined.

Methods

At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing.

Results

Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and Retnlγ). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed.

Conclusions

This study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes.

【 授权许可】

   
2014 Steegenga et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113154536490.pdf 1481KB PDF download
Figure 4. 123KB Image download
Figure 3. 103KB Image download
Figure 2. 56KB Image download
Figure 1. 122KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bermejo-Alvarez P, Lonergan P, Rath D, Gutierrez-Adan A, Rizos D: Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa. Reprod Fertil Dev 2010, 22(2):426-436.
  • [2]Dewing P, Shi T, Horvath S, Vilain E: Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res Mol Brain Res 2003, 118(1–2):82-90.
  • [3]Kobayashi S, Fujihara Y, Mise N, Kaseda K, Abe K, Ishino F, Okabe M: The X-linked imprinted gene family Fthl17 shows predominantly female expression following the two-cell stage in mouse embryos. Nucleic Acids Res 2010, 38(11):3672-3681.
  • [4]Penaloza C, Estevez B, Orlanski S, Sikorska M, Walker R, Smith C, Smith B, Lockshin RA, Zakeri Z: Sex of the cell dictates its response: differential gene expression and sensitivity to cell death inducing stress in male and female cells. FASEB J 2009, 23(6):1869-1879.
  • [5]Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R: Male development of chromosomally female mice transgenic for Sry. Nature 1991, 351(6322):117-121.
  • [6]Jangravi Z, Alikhani M, Arefnezhad B, Sharifi Tabar M, Taleahmad S, Karamzadeh R, Jadaliha M, Mousavi SA, Ahmadi Rastegar D, Parsamatin P, Vakilian H, Mirshahvaladi S, Sabbaghian M, Mohseni Meybodi A, Mirzaei M, Shahhoseini M, Ebrahimi M, Piryaei A, Moosavi-Movahedi AA, Haynes PA, Goodchild AK, Nasr-Esfahani MH, Jabbari E, Baharvand H, Sedighi Gilani MA, Gourabi H, Salekdeh GH: A fresh look at the male-specific region of the human Y chromosome. J Proteome Res 2013, 12(1):6-22.
  • [7]Wijchers PJ, Festenstein RJ: Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet 2011, 27(4):132-140.
  • [8]Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC: Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014, 508(7497):494-499.
  • [9]Deng X, Berletch JB, Nguyen DK, Disteche CM: X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014, 15(6):367-378.
  • [10]Lyon MF: Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190:372-373.
  • [11]Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C, Willard HF, Avner P, Ballabio A: Characterization of a murine gene expressed from the inactive X chromosome. Nature 1991, 351(6324):325-329.
  • [12]Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patel D, Rastan S: Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 1991, 351(6324):329-331.
  • [13]Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF: A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 1991, 349(6304):38-44.
  • [14]Sado T, Brockdorff N: Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013, 368(1609):20110325.
  • [15]Carrel L, Willard HF: X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434(7031):400-404.
  • [16]Yang F, Babak T, Shendure J, Disteche CM: Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 2010, 20(5):614-622.
  • [17]Isensee J, Witt H, Pregla R, Hetzer R, Regitz-Zagrosek V, Noppinger PR: Sexually dimorphic gene expression in the heart of mice and men. J Mol Med 2008, 86(1):61-74.
  • [18]Welle S, Tawil R, Thornton CA: Sex-related differences in gene expression in human skeletal muscle. PLoS One 2008, 3(1):e1385.
  • [19]Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ: Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006, 16(8):995-1004.
  • [20]Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ: A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond) 2010, 34(6):989-1000.
  • [21]Kwekel JC, Desai VG, Moland CL, Vijay V, Fuscoe JC: Sex differences in kidney gene expression during the life cycle of F344 rats. Biol Sex Differ 2013, 4(1):14.
  • [22]Gabory A, Ferry L, Fajardy I, Jouneau L, Gothie JD, Vige A, Fleur C, Mayeur S, Gallou-Kabani C, Gross MS, Attig L, Vambergue A, Lesage J, Reusens B, Vieau D, Remacle C, Jais JP, Junien C: Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS One 2012, 7(11):e47986.
  • [23]Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vige A, Breton C, Reusens B, Remacle C, Vieau D, Ekstrom TJ, Jais JP, Junien C: Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010, 5(12):e14398.
  • [24]Mank JE, Nam K, Brunstrom B, Ellegren H: Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol Biol Evol 2010, 27(7):1570-1578.
  • [25]Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE, Rosenfeld CS: Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci U S A 2010, 107(12):5557-5562.
  • [26]Conforto TL, Waxman DJ: Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood. Biol Sex Differ 2012, 3:9.
  • [27]Saito K, Negishi M, James Squires E: Sexual dimorphisms in zonal gene expression in mouse liver. Biochem Biophys Res Commun 2013, 436(4):730-735.
  • [28]Wauthier V, Sugathan A, Meyer RD, Dombkowski AA, Waxman DJ: Intrinsic sex differences in the early growth hormone responsiveness of sex-specific genes in mouse liver. Mol Endocrinol 2010, 24(3):667-678.
  • [29]Waxman DJ, O’Connor C: Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol 2006, 20(11):2613-2629.
  • [30]Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ: Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol 2006, 20(6):1333-1351.
  • [31]Laz EV, Sugathan A, Waxman DJ: Dynamic in vivo binding of STAT5 to growth hormone-regulated genes in intact rat liver. Sex-specific binding at low- but not high-affinity STAT5 sites. Mol Endocrinol 2009, 23(8):1242-1254.
  • [32]Zhang Y, Laz EV, Waxman DJ: Dynamic, sex-differential STAT5 and BCL6 binding to sex-biased, growth hormone-regulated genes in adult mouse liver. Mol Cell Biol 2012, 32(4):880-896.
  • [33]Chaloner A, Greenwood-Van Meerveld B: Sexually dimorphic effects of unpredictable early life adversity on visceral pain behavior in a rodent model. J Pain 2013, 14(3):270-280.
  • [34]O’Mahony F, Thomas W, Harvey BJ: Novel female sex-dependent actions of oestrogen in the intestine. J Physiol 2009, 587(Pt 21):5039-5044.
  • [35]Sankaran-Walters S, Macal M, Grishina I, Nagy L, Goulart L, Coolidge K, Li J, Fenton A, Williams T, Miller MK, Flamm J, Prindiville T, George M, Dandekar S: Sex differences matter in the gut: effect on mucosal immune activation and inflammation. Biol Sex Differ 2013, 4(1):10.
  • [36]Sugiyama MG, Hobson L, Agellon AB, Agellon LB: Visualization of sex-dimorphic changes in the intestinal transcriptome of Fabp2 gene-ablated mice. J Nutrigenet Nutrigenomics 2012, 5(1):45-55.
  • [37]Scholtens PA, Oozeer R, Martin R, Amor KB, Knol J: The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol 2012, 3:425-447.
  • [38]Brodziak F, Meharg C, Blaut M, Loh G: Differences in mucosal gene expression in the colon of two inbred mouse strains after colonization with commensal gut bacteria. PLoS One 2013, 8(8):e72317.
  • [39]Carlisle EM, Poroyko V, Caplan MS, Alverdy J, Morowitz MJ, Liu D: Murine gut microbiota and transcriptome are diet dependent. Ann Surg 2013, 257(2):287-294.
  • [40]Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013, 4:2384.
  • [41]Ling G, Sugathan A, Mazor T, Fraenkel E, Waxman DJ: Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol Cell Biol 2010, 30(23):5531-5544.
  • [42]Sugathan A, Waxman DJ: Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol 2013, 33(18):3594-3610.
  • [43]Mischke M, Pruis MG, Boekschoten MV, Groen AK, Fitri AR, van de Heijning BJ, Verkade HJ, Muller M, Plosch T, Steegenga WT: Maternal Western-style high fat diet induces sex-specific physiological and molecular changes in two-week-old mouse offspring. PLoS One 2013, 8(11):e78623.
  • [44]Lin K, Kools H, de Groot PJ, Gavai AK, Basnet RK, Cheng F, Wu J, Wang X, Lommen A, Hooiveld GJ, et al.: MADMAX—management and analysis database for multiple ~ omics experiments. J Integr Bioinform 2011, 8(2):160.
  • [45]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  • [46]Dai MH, Wang PL, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005, 33(20):e175.
  • [47]Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol 2006, 411:134-193.
  • [48]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374-378.
  • [49]Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD, Medvedovic M: Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinformatics 2006, 7:538.
  • [50]Steegenga WT, Boekschoten MV, Lute C, Hooiveld GJ, de Groot PJ, Morris TJ, Teschendorff AE, Butcher LM, Beck S, Muller M: Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. Age (Dordr) 2014, 36:1523-1540.
  • [51]Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, Kekkonen RA, Palva A, de Vos WM: Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 2010, 81(2):127-134.
  • [52]Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PM, Saulnier DM, Van II S, van Hijum SA, Kleerebezem M, Schalkwijk J, Timmerman HM: Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 2012, 13(11):R101.
  • [53]Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37(Database issue):D141-D145.
  • [54][http://www.scipy.org/] webcite SciPy [].
  • [55]Anderson RM, Shanmuganayagam D, Weindruch R: Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol 2009, 37(1):47-51.
  • [56]Burdo J, Dargusch R, Schubert D: Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum. J Histochem Cytochem 2006, 54(5):549-557.
  • [57]Cortese JF, Spannhake EW, Eisinger W, Potter JJ, Yang VW: The 5-lipoxygenase pathway in cultured human intestinal epithelial cells. Prostaglandins 1995, 49(3):155-166.
  • [58]Evers BM, Izukura M, Chung DH, Parekh D, Yoshinaga K, Greeley GH Jr, Uchida T, Townsend CM Jr, Thompson JC: Neurotensin stimulates growth of colonic mucosa in young and aged rats. Gastroenterology 1992, 103(1):86-91.
  • [59]Thor K, Rosell S: Neurotensin increases colonic motility. Gastroenterology 1986, 90(1):27-31.
  • [60]Long F, Liu H, Hahn C, Sumazin P, Zhang MQ, Zilberstein A: Genome-wide prediction and analysis of function-specific transcription factor binding sites. In Silico Biol 2004, 4(4):395-410.
  • [61]Cotton AM, Lam L, Affleck JG, Wilson IM, Penaherrera MS, McFadden DE, Kobor MS, Lam WL, Robinson WP, Brown CJ: Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 2011, 130(2):187-201.
  • [62]Katschinski M, Dippel C, Reinshagen M, Schirra J, Arnold R, Nustede R, Beglinger C, Adler G: Induction of the fed pattern of human exocrine pancreatic secretion by nutrients: role of cholecystokinin and neurotensin. Clin Investig 1992, 70(10):902-908.
  • [63]Sakamoto T, Newman J, Fujimura M, Greeley GH Jr, Townsend CM Jr, Thompson JC: Role of neurotensin in pancreatic secretion. Surgery 1984, 96(2):146-153.
  • [64]Andersson S, Rosell S, Hjelmquist U, Chang D, Folkers K: Inhibition of gastric and intestinal motor activity in dogs by (Gln4) neurotensin. Acta Physiol Scand 1977, 100(2):231-235.
  • [65]Zhang AQ, Li XL, Jiang CY, Lin L, Shi RH, Chen JD, Oomura Y: Expression of nesfatin-1/NUCB2 in rodent digestive system. World J Gastroenterol 2010, 16(14):1735-1741.
  • [66]Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M: Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443(7112):709-712.
  • [67]Shojima N, Ogihara T, Inukai K, Fujishiro M, Sakoda H, Kushiyama A, Katagiri H, Anai M, Ono H, Fukushima Y, Horike N, Viana AY, Uchijima Y, Kurihara H, Asano T: Serum concentrations of resistin-like molecules beta and gamma are elevated in high-fat-fed and obese db/db mice, with increased production in the intestinal tract and bone marrow. Diabetologia 2005, 48(5):984-992.
  • [68]Fan C, Johns BA, Su Q, Kolosova IA, Johns RA: Choosing the right antibody for resistin-like molecule (RELM/FIZZ) family members. Histochem Cell Biol 2013, 139(4):605-613.
  • [69]Gentschew L, Ferguson LR: Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol Nutr Food Res 2012, 56(4):524-535.
  • [70]Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I: Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014, 20(5):1192-1210.
  • [71]Van Limbergen J, Radford-Smith G, Satsangi J: Advances in IBD genetics. Nat Rev Gastroenterol Hepatol 2014, 11:372-385.
  • [72]Prideaux L, Kamm MA, De Cruz PP, Chan FK, Ng SC: Inflammatory bowel disease in Asia: a systematic review. J Gastroenterol Hepatol 2012, 27(8):1266-1280.
  • [73]Manousou P, Kolios G, Valatas V, Drygiannakis I, Bourikas L, Pyrovolaki K, Koutroubakis I, Papadaki HA, Kouroumalis E: Increased expression of chemokine receptor CCR3 and its ligands in ulcerative colitis: the role of colonic epithelial cells in in vitro studies. Clin Exp Immunol 2010, 162(2):337-347.
  • [74]Mir A, Minguez M, Tatay J, Pascual I, Pena A, Sanchiz V, Almela P, Mora F, Benages A: Elevated serum eotaxin levels in patients with inflammatory bowel disease. Am J Gastroenterol 2002, 97(6):1452-1457.
  • [75]Suraweera N, Zampeli E, Rogers P, Atkin W, Forbes A, Harbord M, Silver A: NCF1 (p47phox) and ncf1 pseudogenes are not associated with inflammatory bowel disease. Inflamm Bowel Dis 2004, 10(6):758-762.
  • [76]Wang Y, Han G, Chen Y, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, Guo R, Li Y, Chen G: Protective role of tumor necrosis factor (TNF) receptors in chronic intestinal inflammation: TNFR1 ablation boosts systemic inflammatory response. Lab Invest 2013, 93(9):1024-1035.
  • [77]Sun Q, Weber CR, Sohail A, Bernardo MM, Toth M, Zhao H, Turner JR, Fridman R: MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties. J Biol Chem 2007, 282(30):21998-22010.
  • [78]Bejrananda T, Phukaoloun M, Boonpipattanapong T, Wanitsuwan W, Kanngern S, Sangthong R, Sangkhathat S: WT1 expression as an independent marker of poor prognosis in colorectal cancers. Cancer Biomark 2010, 8(1):35-42.
  • [79]Duval C, Thissen U, Keshtkar S, Accart B, Stienstra R, Boekschoten MV, Roskams T, Kersten S, Muller M: Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57BL/6 mice. Diabetes 2010, 59(12):3181-3191.
  • [80]Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS: Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339(6123):1084-1088.
  • [81]Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, Antonopoulos D, Umesaki Y, Chervonsky AV: Gender bias in autoimmunity is influenced by microbiota. Immunity 2013, 39(2):400-412.
  • [82]Friswell MK, Gika H, Stratford IJ, Theodoridis G, Telfer B, Wilson ID, McBain AJ: Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 2010, 5(1):e8584.
  • [83]Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J: Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 2013, 14(1):R4.
  • [84]Renfree MB, Chew K, Shaw G: Hormone-independent pathways of sexual differentiation.Sex Dev 2014, :1–10 [Epub ahead of print].
  • [85]Reinius B, Johansson MM, Radomska KJ, Morrow EH, Pandey GK, Kanduri C, Sandberg R, Williams RW, Jazin E: Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. BMC Genomics 2012, 13:607.
  • [86]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39(4):457-466.
  文献评价指标  
  下载次数:95次 浏览次数:23次