期刊论文详细信息
BMC Cancer
TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling
Jan C Brase4  Marc Johannes4  Heiko Mannsperger2  Maria Fälth4  Jennifer Metzger4  Lukasz A Kacprzyk4  Tatjana Andrasiuk4  Stephan Gade4  Michael Meister6  Hüseyin Sirma3  Guido Sauter3  Ronald Simon3  Thorsten Schlomm5  Tim Beißbarth1  Ulrike Korf2  Ruprecht Kuner4  Holger Sültmann4 
[1] Department Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
[2] Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
[3] Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
[4] Unit Cancer Genome Research, Division of Molecular Genetics, German Cancer Research Center and National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
[5] Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
[6] Translational Research Unit, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
关键词: Gene expression profiling;    TMPRSS2-ERG;    Prostate cancer;   
Others  :  1080628
DOI  :  10.1186/1471-2407-11-507
 received in 2011-06-09, accepted in 2011-12-05,  发布年份 2011
PDF
【 摘 要 】

Background

TMPRSS2-ERG gene fusions occur in about 50% of all prostate cancer cases and represent promising markers for molecular subtyping. Although TMPRSS2-ERG fusion seems to be a critical event in prostate cancer, the precise functional role in cancer development and progression is still unclear.

Methods

We studied large-scale gene expression profiles in 47 prostate tumor tissue samples and in 48 normal prostate tissue samples taken from the non-suspect area of clinical low-risk tumors using Affymetrix GeneChip Exon 1.0 ST microarrays.

Results

Comparison of gene expression levels among TMPRSS2-ERG fusion-positive and negative tumors as well as benign samples demonstrated a distinct transcriptional program induced by the gene fusion event. Well-known biomarkers for prostate cancer detection like CRISP3 were found to be associated with the gene fusion status. WNT and TGF-β/BMP signaling pathways were significantly associated with genes upregulated in TMPRSS2-ERG fusion-positive tumors.

Conclusions

The TMPRSS2-ERG gene fusion results in the modulation of transcriptional patterns and cellular pathways with potential consequences for prostate cancer progression. Well-known biomarkers for prostate cancer detection were found to be associated with the gene fusion. Our results suggest that the fusion status should be considered in retrospective and future studies to assess biomarkers for prostate cancer detection, progression and targeted therapy.

【 授权许可】

   
2011 Brase et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203025745736.pdf 427KB PDF download
Figure 3. 30KB Image download
Figure 2. 30KB Image download
Figure 1. 119KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA: Cancer J Clin 2011, 61:69-90.
  • [2]Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al.: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Sci 2005, 310:644-648.
  • [3]Kumar-Sinha C, Tomlins SA, Chinnaiyan AM: Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008, 8:497-511.
  • [4]Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, Alimonti A, Nardella C, Varmeh S, Scardino PT, et al.: Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009, 41:619-624.
  • [5]Hermans KG, Boormans JL, Gasi D, van Leenders GJ, Jenster G, Verhagen PC, Trapman J: Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res 2009, 15:6398-6403.
  • [6]Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T: TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 2008, 14:3395-3400.
  • [7]Mosquera JM, Perner S, Demichelis F, Kim R, Hofer MD, Mertz KD, Paris PL, Simko J, Collins C, Bismar TA, et al.: Morphological features of TMPRSS2-ERG gene fusion prostate cancer. J Pathol 2007, 212:91-101.
  • [8]Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, Nau M, Ravindranath L, Dobi A, Srikantan V, et al.: Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005, 24:3847-3852.
  • [9]Wang J, Cai Y, Ren C, Ittmann M: Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006, 66:8347-8351.
  • [10]Mertz KD, Setlur SR, Dhanasekaran SM, Demichelis F, Perner S, Tomlins S, Tchinda J, Laxman B, Vessella RL, Beroukhim R, et al.: Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 2007, 9:200-206.
  • [11]Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, et al.: Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008, 10:177-188.
  • [12]Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, Rantala J, Alanen K, Nees M, Kallioniemi O: FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2010, 70:6735-6745.
  • [13]Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S, Skotheim RI, Peltola M, Smit F, Verhaegh G, Schalken J, et al.: TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 2006, 66:10242-10246.
  • [14]Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, Wu L, Li J, Hu M, Gong Y, et al.: An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010, 17:443-454.
  • [15]Schlomm T, Luebke AM, Sültmann H, Hellwinkel OJC, Sauer U, Poustka A, David KA, Chun FKH, Haese A, Graefen M: Extraction and processing of high quality RNA from impalpable and macroscopically invisible prostate cancer for microarray gene expression analysis. Intl J Oncol 2005, 27:713-720.
  • [16]Jhavar S, Reid A, Clark J, Kote-Jarai Z, Christmas T, Thompson A, Woodhouse C, Ogden C, Fisher C, Corbishley C, et al.: Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays. J Mol Diagn 2008, 10:50-57.
  • [17]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of affymetrix genechip probe level data. Nucleic Acids Res 2003, 31:e15.
  • [18]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004., 3
  • [19]Benjamini YHY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995, 57:289-300.
  • [20]Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al.: Integrative genomic profiling of human prostate cancer. Cancer Cell 2010, 18:11-22.
  • [21]Jhavar S, Brewer D, Edwards S, Kote-Jarai Z, Attard G, Clark J, Flohr P, Christmas T, Thompson A, Parker M, et al.: Integration of ERG gene mapping and gene-expression profiling identifies distinct categories of human prostate cancer. BJU Int 2008.
  • [22]Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andren O, Johnson LA, et al.: Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst 2008, 100:815-825.
  • [23]Bjartell A, Johansson R, Bjork T, Gadaleanu V, Lundwall A, Lilja H, Kjeldsen L, Udby L: Immunohistochemical detection of cysteine-rich secretory protein 3 in tissue and in serum from men with cancer or benign enlargement of the prostate gland. Prostate 2006, 66:591-603.
  • [24]Kosari F, Asmann YW, Cheville JC, Vasmatzis G: Cysteine-rich secretory protein-3: a potential biomarker for prostate cancer. Cancer Epidemiol Biomarkers Prev 2002, 11:1419-1426.
  • [25]Bjartell AS, Al-Ahmadie H, Serio AM, Eastham JA, Eggener SE, Fine SW, Udby L, Gerald WL, Vickers AJ, Lilja H, et al.: Association of cysteine-rich secretory protein 3 and beta-microseminoprotein with outcome after radical prostatectomy. Clin Cancer Res 2007, 13:4130-4138.
  • [26]Ribeiro FR, Paulo P, Costa VL, Barros-Silva JD, Ramalho-Carvalho J, Jerónimo C, Henrique R, Lind GE, Skotheim RI, Lothe RA, Teixeira MR: Cysteine-Rich Secretory Protein-3 (CRISP3) is strongly up-regulated in prostate carcnimoas with theTMPRSS2-ERG fusion gene. PLoS One 2011, 6:e22317.
  • [27]Demichelis F, Setlur SR, Beroukhim R, Perner S, Korbel JO, Lafargue CJ, Pflueger D, Pina C, Hofer MD, Sboner A, et al.: Distinct genomic aberrations associated with ERG rearranged prostate cancer. Genes Chromosome Canc 2009, 48:366-380.
  • [28]Wei S, Dunn TA, Isaacs WB, De Marzo AM, Luo J: GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi apparatus. Prostate 2008, 68:1387-1395.
  • [29]Xu J, Lamouille S, Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009, 19:156-172.
  • [30]Cheon SS, Nadesan P, Poon R, Alman BA: Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 2004, 293:267-274.
  • [31]Song K, Wang H, Krebs TL, Wang B, Kelley TJ, Danielpour D: DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol Endocrinol 2010, 24:2019-2029.
  • [32]Wikstrom P, Westin P, Stattin P, Damber JE, Bergh A: Early castration-induced upregulation of transforming growth factor beta1 and its receptors is associated with tumor cell apoptosis and a major decline in serum prostate-specific antigen in prostate cancer patients. Prostate 1999, 38:268-277.
  • [33]Brodin G, ten Dijke P, Funa K, Heldin CH, Landstrom M: Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Res 1999, 59:2731-2738.
  • [34]Kyprianou N, Isaacs JT: Expression of transforming growth factor-beta in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 1989, 3:1515-1522.
  • [35]Karnes RJ, Cheville JC, Ida CM, Sebo TJ, Nair AA, Tang H, Munz JM, Kosari F, Vasmatzis G: The ability of biomarkers to predict systemic progression in men with high-risk prostate cancer treated surgically is dependent on ERG status. Cancer Res 2010, 70:8994-9002.
  文献评价指标  
  下载次数:25次 浏览次数:25次