期刊论文详细信息
Biotechnology for Biofuels
Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock
Claire M Hull3  E Joel Loveridge1  Nicola J Rolley3  Iain S Donnison2  Steven L Kelly3  Diane E Kelly3 
[1] School of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, UK
[2] Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EE, Wales, UK
[3] Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, Wales, UK
关键词: Squalene epoxidase;    Squalene;    Sterol;    Ethanol;    ERG1;    Bio-based products;   
Others  :  1084514
DOI  :  10.1186/s13068-014-0133-7
 received in 2014-01-29, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

Genetically customised Saccharomyces cerevisiae that can produce ethanol and additional bio-based chemicals from sustainable agro-industrial feedstocks (for example, residual plant biomass) are of major interest to the biofuel industry. We investigated the microbial biorefinery concept of ethanol and squalene co-production using S. cerevisiae (strain YUG37-ERG1) wherein ERG1 (squalene epoxidase) transcription is under the control of a doxycycline-repressible tet07-CYC1 promoter. The production of ethanol and squalene by YUG37-ERG1 grown using agriculturally sourced grass juice supplemented with doxycycline was assessed.

Results

Use of the tet07-CYC1 promoter permitted regulation of ERG1 expression and squalene accumulation in YUG37-ERG1, allowing us to circumvent the lethal growth phenotype seen when ERG1 is disrupted completely. In experiments using grass juice feedstock supplemented with 0 to 50 μg doxycycline mL−1, YUG37-ERG1 fermented ethanol (22.5 [±0.5] mg mL−1) and accumulated the highest squalene content (7.89 ± 0.25 mg g−1 dry biomass) and yield (18.0 ± 4.18 mg squalene L−1) with supplements of 5.0 and 0.025 μg doxycycline mL−1, respectively. Grass juice was found to be rich in water-soluble carbohydrates (61.1 [±3.6] mg sugars mL−1) and provided excellent feedstock for growth and fermentation studies using YUG37-ERG1.

Conclusion

Residual plant biomass components from crop production and rotation systems represent possible substrates for microbial fermentation of biofuels and bio-based compounds. This study is the first to utilise S. cerevisiae for the co-production of ethanol and squalene from grass juice. Our findings underscore the value of the biorefinery approach and demonstrate the potential to integrate microbial bioprocess engineering with existing agriculture.

【 授权许可】

   
2014 Hull et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162256531.pdf 805KB PDF download
Figure 4. 29KB Image download
Figure 3. 33KB Image download
Figure 2. 34KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Dashtban M, Schraft H, Qin W: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 2009, 5:578-595.
  • [2]Kumar P, Barrett DM, Delwiche MJ, Stroeve P: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009, 48:3713-3729.
  • [3]Margeot A, Hahn-Hägerdal B, Edlund M, Slade R, Monot F: New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 2009, 20:372-380.
  • [4]Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84:37-53.
  • [5]Wiedemann B, Boles E: Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 2008, 74:2043-2050.
  • [6]Chi C, Zhang Z, Ge W, Jameel H: The relationship between two methods for evaluating five-carbon sugars in eucalyptus extraction liquor. BioResources 2009, 4:537-543.
  • [7]Abbott DA, Zelle RM, Jack T, Pronk JT, Van Maris AJA: Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 2009, 9(8):1123-1136.
  • [8]Pirkov I, Albers E, Norbeck J, Larsson C: Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab Eng 2008, 10:276-280.
  • [9]Thomsen MH, Hauggaard-Nielsen H, Petersson A, Thomsen AB, Jensen ES: Sustainable bioethanol production combining biorefinery principles and intercropping strategies. Energy solutions for sustainable development. Risø International Energy Conference; 2007:22–24.
  • [10]Zhang Y, Du H, Qian X, Chen EY-X: Ionic liquid − water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels 2010, 4:2410-2417.
  • [11]Trichopoulou A, Lagiou P, Kuper H, Trichopoulos D: Cancer and Mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev 2000, 9(9):869-873.
  • [12]Huang Z-R, Lin Y-K, Fang J-Y: Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 2009, 14(1):540-554.
  • [13]Fox CB: Squalene emulsions for parenteral vaccine and drug delivery. Molecules 2009, 14(9):3286-3312.
  • [14]Reddy LH, Couvreur P: Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 2009, 61(15):1412-1426.
  • [15]Ourisson G, Rohmer M, Poralla K: Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 1987, 41:301-333.
  • [16]Spanova M, Daum G: Squalene - biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol 2011, 113(11):1299-1320.
  • [17]Newmark HL: Squalene, olive oil, and cancer risk: review and hypothesis. Ann N Y Acad Sci 1999, 889:193-203.
  • [18]Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H: Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. Food Chem Toxicol 2000, 38(8):647-659.
  • [19]Gershbein LL, Singh EJ: Hydrocarbons of dogfish and cod livers and herring oil. J Am Oil Chem Soc 1969, 46(10):554-557.
  • [20]Catchpole OJ, von Kamp JC, Grey JB: Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide. Ind Eng Chem Res 1997, 36(10):4318-4324.
  • [21]Parks LW: Metabolism of sterols in yeast. CRC Crit Rev Microbiol 1978, 6(4):301-341.
  • [22]Daum G, Lees ND, Bard M, Dickson R: Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 1998, 14(16):1471-1510.
  • [23]Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly DE, Kelly S, Schweizer E, Schuller HJ, Hojad U, Greiner E, Finger K: Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 1999, 15(7):601-614.
  • [24]Lees ND, Bard M, Kirsch DR: Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 1999, 34(1):33-47.
  • [25]Kamimura K, Hidaka M, Masaki H, Uozumi T: Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination. Appl Microbiol Biotechnol 1994, 42(2–3):353-357.
  • [26]Mantzouridou F, Tsimidou MZ: Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Res 2010, 10(6):699-707.
  • [27]Naziri E, Mantzouridou F, Tsimidou MZ: Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 2011, 59(18):9980-9989.
  • [28]Daum G, Glatz H, Paltauf F: Lipid metabolism in an inositol deficient yeast, Saccharomyces carlsbergensis: influence of temperature and anaerobiosis on cellular lipid composition. Biochim Biophys Acta 1977, 488(3):484-492.
  • [29]Mantzouridou F, Naziri E, Tsimidou MZ: Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. J Agric Food Chem 2009, 57(14):6189-6198.
  • [30]Gollub EG, Liu K, Dayan J, Adlersberg M, Sprinson DB: Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem 1977, 252(9):2846-2854.
  • [31]Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A, Daum G: Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2012, 1821(4):647-653.
  • [32]Jandrositz A, Turnowsky F, Hogenauer G: The gene encoding squalene epoxidase from Saccharomyces cerevisiae – cloning and characterization. Gene 1991, 107(1):155-160.
  • [33]Landl KM, Klosch B, Turnowsky F: ERG1, encoding squalene epoxidase, is located on the right arm of chromosome VII of Saccharomyces cerevisiae. Yeast 1996, 12(6):609-613.
  • [34]Jahnke L, Klein HP: Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol 1983, 155(2):488-492.
  • [35]Garí E, Piedrafita L, Aldea M, Herrero E: A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 1997, 13(9):837-848.
  • [36]Groeneveld P, Rolley N, Kell DB, Kelly SL, Kelly DE: Metabolic control analysis and engineering of the yeast sterol biosynthetic pathway. Mol Biol Rep 2002, 29(1–2):27-29.
  • [37]Martel CM, Warrilow AGS, Jackson CJ, Mullins JGL, Togawa RC, Parker JE, Morris MS, Donnison IS, Kelly DE, Kelly SL: Expression, purification and use of the soluble domain of Lactobacillus paracasei beta-fructosidase to optimise production of bioethanol from grass fructans. Bioresour Technol 2010, 101(12):4395-4402.
  • [38]Martel CM, Parker JE, Jackson CJ, Warrilow AGS, Rolley N, Greig C, Morris SM, Donnison IS, Kelly DE, Kelly SL: Expression of bacterial levanase in yeast enables simultaneous saccharification and fermentation of grass juice to bioethanol. Bioresour Technol 2011, 102(2):1503-1508.
  • [39]Charlton A, Elias R, Fish S, Fowler P, Gallagher J: The biorefining opportunities in Wales: understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem Eng Res Design 2009, 87(9):1147-1161.
  • [40]Farrar K, Bryant DN, Turner L, Gallagher JA, Thomas A, Farrell M, Humphreys MO, Donnison IS: Breeding for bio-ethanol production in Lolium perenne L.: association of allelic variation with high water-soluble carbohydrate content. Bioresour Technol 2012, 5:149-157.
  • [41]Kyazze G, Dinsdale R, Hawkes FR, Guwy AJ, Premier GC, Donnison IS: Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour Technol 2008, 99:8833-8839.
  • [42]Martel CM, Parker JE, Warrilow AGS, Rolley NJ, Kelly SL, Kelly DE: Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (sterol 14α-demethylase) doxycycline-regulated mutant and screening of the azole sensitivity of Aspergillus fumigatus isoenzymes CYP51A and CYP51B. Antimicrob Agents Chemother 2010, 54(11):4920-4923.
  • [43]Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AGS, Kelly DE, Kelly SL: A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14α-demethylase) and ERG5 (encoding C22-desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 2010, 54(9):3578-3583.
  • [44]Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AGS, Rolley N, Kelly DE, Kelly SL: Identification and characterization of four azole resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 2010, 54(11):4527-4533.
  • [45]Bai FW, Anderson WA, Moo-Young M: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 2008, 26(1):89-105.
  • [46]Choi G-W, Kang H-W, Moon S-K: Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Appl Microbiol Biotechnol 2009, 84(2):261-269.
  • [47]Duarte J, Lourenço V, Ribeiro B, Saagua M, Pereira J, Baeta-Hall L: Ethanol Production from Different Substrates by a Flocculent Saccharomyces cerevisiae Strain. Int J Chem Reactor Eng 2009, 7(1):ISSN (Online) 1542-6580.
  • [48]Li Q, Zhao X-Q, Chang AK, Zhang Q-M, Bai F-W: Ethanol-induced yeast flocculation directed by the promoter of TPS1encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 2012, 14(1):1-8.
  • [49]Leber R, Fuchsbichler S, Klobučníková V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, Turnowsky F: Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2003, 47(12):3890-3900.
  • [50]Koller A, Valesco J, Subramani S: The CUP I promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast 2000, 16:651-656.
  • [51]Tronchoni J, Rozes N, Querol A, Manuel Guillamon J: Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int J Food Microbiol 2012, 155(3):191-198.
  • [52]Yan GL, Liang HY, Duan CQ, Han BZ: Enhanced production of beta-Carotene by recombinant industrial wine yeast using grape juice as substrate. Curr Microbiol 2012, 64(2):152-158.
  文献评价指标  
  下载次数:49次 浏览次数:8次