期刊论文详细信息
BMC Biotechnology
Natural transformation of Thermotoga sp. strain RQ7
Dongmei Han1  Hui Xu1  Rutika Puranik1  Zhaohui Xu1 
[1] Department of Biological Sciences, Bowling Green State University, 43403 Bowling Green, OH, USA
关键词: pDH12;    pDH10;    Natural competence;    Natural transformation;    Thermotoga;   
Others  :  834854
DOI  :  10.1186/1472-6750-14-39
 received in 2013-11-06, accepted in 2014-05-02,  发布年份 2014
PDF
【 摘 要 】

Background

Thermotoga species are organisms of enormous interest from a biotechnological as well as evolutionary point of view. Genetic modifications of Thermotoga spp. are often desired in order to fully release their multifarious potentials. Effective transformation of recombinant DNA into these bacteria constitutes a critical step of such efforts. This study aims to establish natural competency in Thermotoga spp. and to provide a convenient method to transform these organisms.

Results

Foreign DNA was found to be relatively stable in the supernatant of a Thermotoga culture for up to 6 hours. Adding donor DNA to T. sp. strain RQ7 at its early exponential growth phase (OD600 0.18 ~ 0.20) resulted in direct acquisition of the DNA by the cells. Both T. neapolitana chromosomal DNA and Thermotoga-E. coli shuttle vectors effectively transformed T. sp. strain RQ7, rendering the cells resistance to kanamycin. The kan gene carried by the shuttle vector pDH10 was detected by PCR from the plasmid extract of the transformants, and the amplicons were verified by restriction digestions. A procedure for natural transformation of Thermotoga spp. was established and optimized. With the optimized method, T. sp. strain RQ7 sustained a transformation frequency in the order of 10-7 with both genomic and plasmid DNA.

Conclusions

T. sp. strain RQ7 cells are naturally transformable during their early exponential phase. They acquire DNA from both closely and distantly related species. Both chromosomal DNA and plasmid DNA serve as suitable substrates for transformation. Our findings lend a convenient technical tool for the genetic engineering of Thermotoga spp.

【 授权许可】

   
2014 Han et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715092705552.pdf 1130KB PDF download
Figure 7. 37KB Image download
Figure 6. 42KB Image download
Figure 5. 60KB Image download
Figure 4. 46KB Image download
Figure 3. 38KB Image download
Figure 2. 35KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Schroder C, Selig M, Schonheit P: Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium thermotoga maritima: involvement of the embden-meyerhof pathway. Arch Microbiol 1994, 161(6):460-470.
  • [2]Selig M, Xavier KB, Santos H, Schonheit P: Comparative analysis of embden-meyerhof and entner-doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium thermotoga. Arch Microbiol 1997, 167(4):217-232.
  • [3]Han D, Norris SM, Xu Z: Construction and transformation of a Thermotoga-E coli shuttle vector. BMC Biotechnol 2012, 12:2. BioMed Central Full Text
  • [4]Yu JS, Vargas M, Mityas C, Noll KM: Liposome-mediated DNA uptake and transient expression in Thermotoga. Extremophiles 2001, 5(1):53-60.
  • [5]Schwarzenlander C, Averhoff B: Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006, 273(18):4210-4218.
  • [6]Smith HO, Gwinn ML, Salzberg SL: DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 1999, 150(9–10):603-616.
  • [7]Dubnau D: Binding and transport of transforming DNA by Bacillus subtilis: the role of type-IV pilin-like proteins–a review. Gene 1997, 192(1):191-198.
  • [8]Dubnau D: DNA uptake in bacteria. Annu Rev Microbiol 1999, 53:217-244.
  • [9]Averhoff B, Friedrich A: Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol 2003, 180(6):385-393.
  • [10]Claverys JP, Martin B: Bacterial “competence” genes: signatures of active transformation, or only remnants? Trends Microbiol 2003, 11(4):161-165.
  • [11]Berge M, Mortier-Barriere I, Martin B, Claverys JP: Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 2003, 50(2):527-536.
  • [12]Berge M, Moscoso M, Prudhomme M, Martin B, Claverys JP: Uptake of transforming DNA in gram-positive bacteria: a view from streptococcus pneumoniae. Mol Microbiol 2002, 45(2):411-421.
  • [13]Mortier-Barriere I, Velten M, Dupaigne P, Mirouze N, Pietrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, Polard P, Claverys JP: A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 2007, 130(5):824-836.
  • [14]Gwinn ML, Ramanathan R, Smith HO, Tomb JF: A new transformation-deficient mutant of Haemophilus influenzae Rd with normal DNA uptake. J Bacteriol 1998, 180(3):746-748.
  • [15]Johnsborg O, Havarstein LS: Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 2009, 33(3):627-642.
  • [16]Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK: Chitin induces natural competence in Vibrio cholerae. Sci 2005, 310:1824-1827.
  • [17]Mironczuk AM, Kovacs AT, Kuipers OP: Induction of natural competence in Bacillus cereus ATCC14579. J Microbial Biotechnol 2008, 1:226-235.
  • [18]Tsen SD, Fang SS, Chen MJ, Chien JY, Lee CC, Tsen DH: Natural plasmid transformation in Escherichia coli. J Biomed Sci 2002, 9(3):246-252.
  • [19]Cava F, Hidalgo A, Berenguer J: Thermus thermophilus as biological model. Extremophiles 2009, 13(2):213-231.
  • [20]Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM: Evidence for lateral gene transfer between archaea and bacteria from genome sequence of thermotoga maritima. Nature 1999, 399(6734):323-329.
  • [21]Nesbo CL, Doolittle WF, Mongodin EF, Nelson KE: Outside forces helped shape the Thermotoga metagenome. Microbe 2006, 1(5):235-241.
  • [22]Noll KM, Thirangoon K: Interdomain transfers of sugar transporters overcome barriers to gene expression. Methods Mol Biol 2009, 532:309-322.
  • [23]Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, Noll KM: On the chimeric nature, thermophilic origin, and phylogenetic placement of the thermotogales. Proc Natl Acad Sci U S A 2009, 106(14):5865-5870.
  • [24]Harriott OT, Huber R, Stetter KO, Betts PW, Noll KM: A cryptic miniplasmid from the hyperthermophilic bacterium thermotoga Sp strain Rq7. J Bacteriol 1994, 176(9):2759-2762.
  • [25]Akimkina T, Ivanov P, Kostrov S, Sokolova T, Bonch-Osmolovskaya E, Firman K, Dutta CF, McClellan JA: A highly conserved plasmid from the extreme thermophile thermotoga maritima MC24 is a member of a family of plasmids distributed worldwide. Plasmid 1999, 42(3):236-240.
  • [26]Nesbo CL, Dlutek M, Doolittle WF: Recombination in thermotoga: implications for species concepts and biogeography. Genetics 2006, 172(2):759-769.
  • [27]Belkin S, Wirsen CO, Jannasch HW: A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 1986, 51(6):1180-1185.
  • [28]Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO: Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 degrees C. Arch Microbiol 1986, 144(4):324-333.
  • [29]Sissons CH, Sharrock KR, Daniel RM, Morgan HW: Isolation of cellulolytic anaerobic extreme thermophiles from new zealand thermal sites. Appl Environ Microbiol 1987, 53(4):832-838.
  • [30]Grant SG, Jessee J, Bloom FR, Hanahan D: Differential plasmid rescue from transgenic mouse DNAs into escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 1990, 87(12):4645-4649.
  • [31]Lasa I, Caston JR, Fernandez-Herrero LA, de Pedro MA, Berenguer J: Insertional mutagenesis in the extreme thermophilic eubacteria thermus thermophilus HB8. Mol Microbiol 1992, 6(11):1555-1564.
  • [32]Van Ooteghem SA, Beer SK, Yue PC: Hydrogen production by the thermophilic bacterium thermotoga neapolitana. Appl Biochem Biotechnol 2002, 98:177-189.
  • [33]Xu Z, Han D, Cao J, Saini U: Cloning and characterization of the TneDI restriction: modification system of thermotoga neapolitana. Extremophiles 2011, 15(6):665-672.
  • [34]Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury AR: Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel 2007, 20(7):309-313.
  • [35]Mercier A, Bertolla F, Passelegue-Robe E, Simonet P: Influence of DNA conformation and role of comA and recA on natural transformation in Ralstonia solanacearum. Can J Microbiol 2009, 55(6):762-770.
  • [36]Lo Scrudato M, Blokesch M: The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 2012, 8(6):e1002778.
  • [37]Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ: Natural transformation of helicobacter pylori involves the integration of short DNA fragments interrupted by gaps of variable size. PLoS Pathog 2009, 5(3):e1000337.
  • [38]Londono-Vallejo JA, Dubnau D: comF, a bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 1993, 9(1):119-131.
  • [39]Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B: Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium thermus thermophilus strain HB27. Appl Environ Microbiol 2002, 68(2):745-755.
  文献评价指标  
  下载次数:490次 浏览次数:148次