期刊论文详细信息
BMC Bioinformatics
Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data
Charles Cole2  Konstantinos Krampis5  Konstantinos Karagiannis2  Jonas S Almeida1  William J Faison2  Mona Motwani2  Quan Wan2  Anton Golikov4  Yang Pan2  Vahan Simonyan4  Raja Mazumder3 
[1] Division of Informatics of the Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
[2] Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC 20037, USA
[3] McCormick Genomic and Proteomic Center, George Washington University, Washington, DC 20037, USA
[4] Center for Biologics Evaluation and Research, US Food and Drug Administration, 1451 Rockville Pike, HFM-470, Rockville, MD 20852, USA
[5] J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
关键词: Cancer;    Phylogenetics;    NGS;    Next-gen;    SNP;    SNV;    nsSNV;    TCGA;    SRA;   
Others  :  1087639
DOI  :  10.1186/1471-2105-15-28
 received in 2013-11-05, accepted in 2014-01-22,  发布年份 2014
PDF
【 摘 要 】

Background

Next-generation sequencing (NGS) technologies have resulted in petabytes of scattered data, decentralized in archives, databases and sometimes in isolated hard-disks which are inaccessible for browsing and analysis. It is expected that curated secondary databases will help organize some of this Big Data thereby allowing users better navigate, search and compute on it.

Results

To address the above challenge, we have implemented a NGS biocuration workflow and are analyzing short read sequences and associated metadata from cancer patients to better understand the human variome. Curation of variation and other related information from control (normal tissue) and case (tumor) samples will provide comprehensive background information that can be used in genomic medicine research and application studies. Our approach includes a CloudBioLinux Virtual Machine which is used upstream of an integrated High-performance Integrated Virtual Environment (HIVE) that encapsulates Curated Short Read archive (CSR) and a proteome-wide variation effect analysis tool (SNVDis). As a proof-of-concept, we have curated and analyzed control and case breast cancer datasets from the NCI cancer genomics program - The Cancer Genome Atlas (TCGA). Our efforts include reviewing and recording in CSR available clinical information on patients, mapping of the reads to the reference followed by identification of non-synonymous Single Nucleotide Variations (nsSNVs) and integrating the data with tools that allow analysis of effect nsSNVs on the human proteome. Furthermore, we have also developed a novel phylogenetic analysis algorithm that uses SNV positions and can be used to classify the patient population. The workflow described here lays the foundation for analysis of short read sequence data to identify rare and novel SNVs that are not present in dbSNP and therefore provides a more comprehensive understanding of the human variome. Variation results for single genes as well as the entire study are available from the CSR website (http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr webcite).

Conclusions

Availability of thousands of sequenced samples from patients provides a rich repository of sequence information that can be utilized to identify individual level SNVs and their effect on the human proteome beyond what the dbSNP database provides.

【 授权许可】

   
2014 Cole et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117024721774.pdf 2330KB PDF download
Figure 6. 70KB Image download
Figure 5. 65KB Image download
Figure 4. 56KB Image download
Figure 3. 80KB Image download
Figure 2. 98KB Image download
Figure 1. 149KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, et al.: International network of cancer genome projects. Nature 2010, 464(7291):993-998.
  • [2]NCI-TCGA: The Cancer Genome Atlas [TCGA]. 2012. http://cancergenome.nih.gov webcite
  • [3]Boehm JS, Hahn WC: Towards systematic functional characterization of cancer genomes. Nat Rev Genet 2011, 12(7):487-498.
  • [4]ICGC: International Cancer Genome Consortium. 2012. http://www.icgc.org/ webcite
  • [5]Eswaran J, Gupta S, Dutt A, Toi M, Pillai M, Costa L, Knapp S, Badwe R, R K: The global cancer genomics consortium: interfacing genomics and cancer medicine. Cancer Res 2012, 72(15):3720-3724.
  • [6]Srivastava S: The early detection research network: 10-year outlook. Clin Chem 2013, 59(1):60-67.
  • [7]TCGA: TCGA Data Primer. 2012. https://wiki.nci.nih.gov/display/TCGA/TCGA+Data+Primer webcite
  • [8]Deus HF, Veiga DF, Freire PR, Weinstein JN, Mills GB, Almeida JS: Exposing the cancer genome atlas as a SPARQL endpoint. J Biomed Inform 2010, 43(6):998-1008.
  • [9]Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N: Visualizing multidimensional cancer genomics data. Genome medicine 2013, 5(1):9. BioMed Central Full Text
  • [10]DE R, Gruneberg A, HF D, MM T, JS A: A self-updating roadmap of the cancer genome atlas. Bioinformatics 2013. in press
  • [11]Patrinos GP, Smith TD, Howard H, Al-Mulla F, Chouchane L, Hadjisavvas A, Hamed SA, Li XT, Marafie M, Ramesar RS, et al.: Human variome project country nodes: documenting genetic information within a country. Hum Mutat 2012, 33(11):1513-1519.
  • [12]Kohonen-Corish MR, Smith TD, Robinson HM, delegates of the 4th Biennial Meeting of the Human Variome Project Consortium: Beyond the genomics blueprint: the 4th human variome project meeting, UNESCO, Paris, 2012. Genet Med 2013, 15(7):507-12.
  • [13]Celli J, Dalgleish R, Vihinen M, Taschner PE, den Dunnen JT: Curating gene variant databases (LSDBs): toward a universal standard. Hum Mutat 2012, 33(2):291-297.
  • [14]Gaudet P, Arighi C, Bastian F, Bateman A, Blake JA, Cherry MJ, D’Eustachio P, Finn R, Giglio M, Hirschman L, et al.: Recent advances in biocuration: meeting report from the fifth international biocuration conference. Database (Oxford) 2012, 2012:bas036.
  • [15]Gaudet P, Mazumder R: Biocuration virtual issue 2012. Database (Oxford) 2012, 2012:bas011.
  • [16]Burge S, Attwood TK, Bateman A, Berardini TZ, Cherry M, O’Donovan C, Xenarios L, Gaudet P: Biocurators and biocuration: surveying the 21st century challenges. Database (Oxford) 2012, 2012:bar059.
  • [17]Kodama Y, Shumway M, Leinonen R: The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 2012, 40(Database issue):D54-D56.
  • [18]CGHub: The Cancer Genomics Hub. 2013. https://cghub.ucsc.edu/ webcite
  • [19]Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012, 40(Database issue):D130-D135.
  • [20]UniProt_Consortium: Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2013, 40(Database issue):D71-D75.
  • [21]Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, et al.: Database resources of the national center for biotechnology information. Nucleic Acids Res 2011, 39(Database issue):D38-D51.
  • [22]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40(Database issue):D290-D301.
  • [23]Wu CH, Nikolskaya A, Huang H, Yeh LS, Natale DA, Vinayaka CR, Hu ZZ, Mazumder R, Kumar S, Kourtesis P, et al.: PIRSF: family classification system at the protein information resource. Nucleic Acids Res 2004, 32(Database issue):D112-D114.
  • [24]Tanabe M, Kanehisa M: Using the KEGG database resource. Curr Protoc Bioinformatics 2012, Chapter 1:Unit1 12.
  • [25]Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A, et al.: COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 2010, 38(Database issue):D652-D657.
  • [26]Dingerdissen H, Motwani M, Karagiannis K, Simonyan V, Mazumder R: Proteome-wide analysis of non-synonymous single-nucleotide variations in active sites of human proteins. FEBS J 2013, 280(6):1542-62.
  • [27]Mazumder R, Morampudi KS, Motwani M, Vasudevan S, Goldman R: Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes. PloS one 2012, 7(5):e36212.
  • [28]Karagiannis K, Simonyan V, Mazumder R: SNVDis: a proteome-wide analysis service for evaluating nsSNVs in protein functional sites and pathways. Genomics Proteomics Bioinformatics 2013, 11(2):122-6.
  • [29]Lam PV, Goldman R, Karagiannis K, Narsule T, Simonyan V, Soika V, Mazumder R: Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinformatics 2013, 11(2):96-104.
  • [30]Satti P, Simonyan V, Mazumder R: Storage and biocuration of extra-large (XL) data sets from next-generation sequencing technologies. 5th International Biocuration Conference: April 2–4 2012; Washington DC
  • [31]Afgan E, Chapman B, Jadan M, Franke V, Taylor J: Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy. Curr Protoc Bioinformatics 2012, Chapter 11:Unit11 19.
  • [32]Huang H, McGarvey PB, Suzek BE, Mazumder R, Zhang J, Chen Y, Wu CH: A comprehensive protein-centric ID mapping service for molecular data integration. Bioinformatics 2011, 27(8):1190-1191.
  • [33]Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, et al.: CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 2003, 31(1):383-387.
  • [34]Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S, Farrell CM, Loveland JE, Ruef BJ, et al.: The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 2009, 19(7):1316-1323.
  • [35]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [36]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [37]Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH: dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 2006, 34(Database issue):D622-D627.
  • [38]R_Development_Core_Team: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2005.
  • [39]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 21:2947-2948.
  • [40]Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12(4):357-358.
  • [41]Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, et al.: Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009, 461(7261):272-276.
  • [42]National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov webcite]
  • [43]Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD: PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the gene ontology consortium. Nucleic Acids Res 2010, 38(Database issue):D204-D210.
  • [44]Mi H, Muruganujan A, Casagrande JT, Thomas PD: Large-scale gene function analysis with the PANTHER classification system. Nature protocols 2013, 8(8):1551-1566.
  • [45]Collins FS, Guyer MS, Charkravarti A: Variations on a theme: cataloging human DNA sequence variation. Science 1997, 278(5343):1580-1581.
  • [46]Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273(5281):1516-1517.
  • [47]Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES: An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000, 407(6803):513-516.
  • [48]Shu XO, Long J, Lu W, Li C, Chen WY, Delahanty R, Cheng J, Cai H, Zheng Y, Shi J, et al.: Novel genetic markers of breast cancer survival identified by a genome-wide association study. Cancer Res 2012, 72(5):1182-1189.
  • [49]Penney KL, Schumacher FR, Kraft P, Mucci LA, Sesso HD, Ma J, Niu Y, Cheong JK, Hunter DJ, Stampfer MJ, et al.: Association of KLK3 (PSA) genetic variants with prostate cancer risk and PSA levels. Carcinogenesis 2011, 32(6):853-859.
  • [50]Negm RS, Verma M, Srivastava S: The promise of biomarkers in cancer screening and detection. Trends Mol Med 2002, 8(6):288-293.
  • [51]Diamandis M, White NM, Yousef GM: Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res 2010, 8(9):1175-1187.
  • [52]Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, et al.: Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483(7391):570-575.
  • [53]Begum F, Ghosh D, Tseng GC, Feingold E: Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res 2012, 40(9):3777-3784.
  • [54]Ng PC, Henikoff S: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31(13):3812-3814.
  • [55]McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F: Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010, 26(16):2069-2070.
  • [56]Bromberg Y, Rost B: SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 2007, 35(11):3823-3835.
  • [57]Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002, 30(17):3894-3900.
  • [58]Konstantinos K, Simonyan V, Goldman R, Mazumder R: NVDis: a proteome-wide analysis service for evaluating nsSNVs in protein functional sites and pathways. 2nd Annual Beyond The Genome Conference: September 19-22. Washington DC; 2011.
  • [59]Kumar A, White TA, MacKenzie AP, Clegg N, Lee C, Dumpit RF, Coleman I, Ng SB, Salipante SJ, Rieder MJ, et al.: Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci USA 2011, 108(41):17087-17092.
  • [60]McEntyre J, Lipman D: PubMed: bridging the information gap. CMAJ 2001, 164(9):1317-1319.
  • [61]Liu Q, Guo Y, Li J, Long J, Zhang B, Shyr Y: Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genomics 2012, 13(Suppl 8):S8.
  • [62]Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC, et al.: The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 2013, 73(14):4372-4382.
  • [63]Tanner S, Shen Z, Ng J, Florea L, Guigo R, Briggs SP, Bafna V: Improving gene annotation using peptide mass spectrometry. Genome Res 2007, 17(2):231-239.
  • [64]Lam HY, Clark MJ, Chen R, Natsoulis G, O’Huallachain M, Dewey FE, Habegger L, Ashley EA, Gerstein MB, Butte AJ, et al.: Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 2012, 30(1):78-82.
  • [65]Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321(5897):1801-1806.
  • [66]Huang L, Grammatikakis N, Yoneda M, Banerjee SD, Toole BP: Molecular characterization of a novel intracellular hyaluronan-binding protein. J Biol Chem 2000, 275(38):29829-29839.
  • [67]Juliano RL: Integrin signals and tumor growth control. Princess Takamatsu Symp 1994, 24:118-124.
  • [68]Arthur WT, Noren NK, Burridge K: Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion. Biol Res 2002, 35(2):239-246.
  • [69]Fukata M, Kaibuchi K: Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2001, 2(12):887-897.
  • [70]Gruber AD, Pauli BU: Tumorigenicity of human breast cancer is associated with loss of the Ca2 + -activated chloride channel CLCA2. Cancer Res 1999, 59(21):5488-5491.
  • [71]Koo BH, Hurskainen T, Mielke K, Aung PP, Casey G, Autio-Harmainen H, Apte SS: ADAMTSL3/punctin-2, a gene frequently mutated in colorectal tumors, is widely expressed in normal and malignant epithelial cells, vascular endothelial cells and other cell types, and its mRNA is reduced in colon cancer. International journal of cancer Journal international du cancer 2007, 121(8):1710-1716.
  • [72]Ranney MK, Ahmed IS, Potts KR, Craven RJ: Multiple pathways regulating the anti-apoptotic protein clusterin in breast cancer. Biochim Biophys Acta 2007, 1772(9):1103-1111.
  • [73]Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS: Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 2009, 69(24):9498-9506.
  • [74]Batra J, O’Mara T, Patnala R, Lose F, Clements JA: Genetic polymorphisms in the human tissue kallikrein (KLK) locus and their implication in various malignant and non-malignant diseases. Biol Chem 2012, 393(12):1365-1390.
  • [75]Sugimoto M, Furuta T, Shirai N, Ikuma M, Sugimura H, Hishida A: Influences of chymase and angiotensin I-converting enzyme gene polymorphisms on gastric cancer risks in Japan. Cancer Epidemiol Biomarkers Prev 2006, 15(10):1929-1934.
  • [76]Zhang Y, He J, Deng Y, Zhang J, Li X, Xiang Z, Huang H, Tian C, Huang J, Fan H: The insertion/deletion (I/D) polymorphism in the Angiotensin-converting enzyme gene and cancer risk: a meta-analysis. BMC Med Genet 2011, 12:159. BioMed Central Full Text
  • [77]Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA: Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 2004, 279(24):25101-25111.
  • [78]Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT, et al.: Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 2008, 111(9):4716-4722.
  • [79]Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, Rudnik-Schoneborn S, Furu L, Onuchic LF, De Baca M, et al.: Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 2003, 14(1):76-89.
  • [80]Furu L, Onuchic LF, Gharavi A, Hou X, Esquivel EL, Nagasawa Y, Bergmann C, Senderek J, Avner E, Zerres K, et al.: Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol 2003, 14(8):2004-2014.
  • [81]Pandya GA, Holmes MH, Petersen JM, Pradhan S, Karamycheva SA, Wolcott MJ, Molins C, Jones M, Schriefer ME, Fleischmann RD, et al.: Whole genome single nucleotide polymorphism based phylogeny of Francisella tularensis and its application to the development of a strain typing assay. BMC Microbiol 2009, 9:213. BioMed Central Full Text
  • [82]Van Geystelen A, Decorte R, Larmuseau MH: AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 2013, 14:101. BioMed Central Full Text
  • [83]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [84]Kaufman JS, Cooper RS: Commentary: considerations for use of racial/ethnic classification in etiologic research. Am J Epidemiol 2001, 154(4):291-298.
  • [85]Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery 2012, 2(5):401-404.
  • [86]Lee Y, Ise T, Ha D, Saint Fleur A, Hahn Y, Liu XF, Nagata S, Lee B, Bera TK, Pastan I: Evolution and expression of chimeric POTE-actin genes in the human genome. Proc Natl Acad Sci USA 2006, 103(47):17885-17890.
  • [87]Nakagawa H, Wakabayashi-Nakao K, Tamura A, Toyoda Y, Koshiba S, Ishikawa T: Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J 2009, 276(24):7237-7252.
  • [88]Khurana E, Fu Y, Chen J, Gerstein M: Interpretation of genomic variants using a unified biological network approach. PLoS Comput Biol 2013, 9(3):e1002886.
  • [89]Kamphans T, Krawitz PM: GeneTalk: an expert exchange platform for assessing rare sequence variants in personal genomes. Bioinformatics 2012, 28(19):2515-2516.
  • [90]Capriotti E, Nehrt NL, Kann MG, Bromberg Y: Bioinformatics for personal genome interpretation. Brief Bioinform 2012, 13(4):495-512.
  • [91]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [92]Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J: Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics 2010, 11(Suppl 12):S4. BioMed Central Full Text
  文献评价指标  
  下载次数:79次 浏览次数:6次