期刊论文详细信息
BMC Bioinformatics
Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways
Lars Jelsbak2  Søren Molin2  Søren Damkiær2  Morten Mørup1  Juliane Charlotte Thøgersen2 
[1]Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Lyngby, Denmark
[2]Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
关键词: Hypermutators;    Cystic fibrosis;    Pseudomonas aeruginosa;    Gene expression;    Archetypal analysis;   
Others  :  1087757
DOI  :  10.1186/1471-2105-14-279
 received in 2012-12-18, accepted in 2013-09-03,  发布年份 2013
【 摘 要 】

Background

Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data.

The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients.

Results

Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria.

Conclusions

Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data.

【 授权许可】

   
2013 Thøgersen et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Fig. 3. 30KB Image download
Figure 7. 45KB Image download
Figure 6. 94KB Image download
Figure 5. 64KB Image download
Figure 4. 98KB Image download
Figure 3. 49KB Image download
Figure 2. 38KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Fig. 3.

【 参考文献 】
  • [1]Liu W, Wang B, Glassey J, Martin E, Zhao J: A novel methodology for finding the regulation on gene expression data. Proc Natl Acad Sci U S A 2009, 19:267-272.
  • [2]Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, Vingron M: Correspondence analysis applied to microarray data. Proc Natl Acad Sci 2001, 98:10781.
  • [3]Kim MH, Seo HJ, Joung JG, Kim JH: Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data. BMC bioinformatics 2011, 12(Suppl 1):S8. BioMed Central Full Text
  • [4]Quackenbush J: Computational analysis of microarray data: nature reviews. Genetics 2001, 2:418-427.
  • [5]Mørup M, Hansen LK: Archetypal analysis for machine learning and data mining. Neurocomputing 2012, 80:54-63.
  • [6]Cutler A, Breiman L: Archetypal analysis. Technometrics 1994, 36:338-347.
  • [7]Marinetti S, Finesso L, Marsilio E: Archetypes and principal components of an IR image sequence. Infrared Phys Technol 2007, 49:272-276.
  • [8]Porzio GC, Ragozini G, Vistocco D: On the use of archetypes as benchmarks. Appl Stochastic Models Bus Indu 2008, 24:419-437.
  • [9]Huggins P, Pachter L, Sturmfels B: Toward the human genotope. Bull Math Biol 2007, 69:2723-2735.
  • [10]Schwartz R, Shackney SE: Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinforma 2010, 11:42. BioMed Central Full Text
  • [11]Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U: Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 2012, 1157:1157-1160.
  • [12]Noor E, Milo R: Efficiency in evolutionary trade-offs. Science 2012, 336:1114-1115.
  • [13]Gautier L, Cope L, Bolstad BM, Irizarry RA: Affy–analysis of affymetrix genechip data at the probe level. Bioinformatics (Oxford, England) 2004, 20:307-315.
  • [14]Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielsen HB, Saxild H, Brunak S, Knudsen S: A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 2002, 3:1-16.
  • [15]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics (Oxford, England) 2003, 4:249-264.
  • [16]Huse H, Kwon T, Zlosnik J, Speert D: Parallel evolution in pseudomonas aeruginosa over 39,000 generations in vivo. MBio 2010, 1:0-8.
  • [17]Yang L, Rau MH, Yang L, Hoiby N, Molin S, Jelsbak L: Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data. BMC Microbiol 2011, 11:184. BioMed Central Full Text
  • [18]Hoboth C, Hoffmann R, Eichner A, Henke C, Schmoldt S, Imhof A, Heesemann J, Hogardt M: Dynamics of adaptive microevolution of hypermutable pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 2009, 200:118-130.
  • [19]Lee B, Schjerling CK, Kirkby N, Hoffmann N, Borup R, Molin S, Høiby N, Ciofu O: Mucoid pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients. APMIS 2011, 119:263-274.
  • [20]Holloway BW, Krishnapillai V, Morgan AF: Chromosomal genetics of pseudomonas. Microbiol Rev 1979, 43:73-102.
  • [21]Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM: Common virulence factors for bacterial pathogenicity in plants and animals. Science (New York, N.Y.) 1995, 268:1899-1902.
  • [22]Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Köhler T, Van Delden C, Weinel C, Slickers P, Tümmler B: Population structure of pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2007, 104:8101-8106.
  • [23]Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O, Høiby N, Sommer MOA, Molin S: Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 2011, 108:7481-7486.
  • [24]Rau MH, Hansen SK, Johansen HK, Thomsen LE, Workman CT, Nielsen KF, Jelsbak L, Høiby N, Yang L, Molin S: Early adaptive developments of pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol 2010, 12:1643-1658.
  • [25]Winsor GL, Lam DKW, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock REW, Brinkman FSL: Pseudomonas genome database: improved comparative analysis and population genomics capability for pseudomonas genomes. Nucleic Acids Res 2011, 39:D596-D600.
  • [26]Rivals I, Personnaz L, Taing L, Potier M: Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 2007, 23:401-407.
  • [27]Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L: Deletion and acquisition of genomic content during early stage adaptation of pseudomonas aeruginosa to a human host environment. Environ Microbiol 2012, 14:2200-2211.
  • [28]Govan JR, Deretic V: Microbial pathogenesis in cystic fibrosis: mucoid pseudomonas aeruginosa and burkholderia cepacia. Microbiological reviews 1996, 60:539-574.
  • [29]Jelsbak L, Johansen HK, Frost AL, Thøgersen R, Thomsen LE, Ciofu O, Yang L, Haagensen JAJ, Høiby N, Molin S: Molecular epidemiology and dynamics of pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 2007, 75:2214-2224.
  • [30]Sundin GW, Weigand MR: The microbiology of mutability. FEMS Microbiol Lett 2007, 277:11-20.
  • [31]Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, Oliver A: Genetic adaptation of pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 2008, 190:7910-7917.
  • [32]Oliver A, Mena A: Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect 2010, 16:798-808.
  • [33]Fukui K, Wakamatsu T, Agari Y, Masui R, Kuramitsu S: Inactivation of the DNA repair genes mutS, mutL or the anti-recombination gene mutS2 leads to activation of vitamin B1 biosynthesis genes. PloS one 2011, 6:e19053.
  • [34]Moyano AJ, Smania AM: Simple sequence repeats and mucoid conversion: biased mucA mutagenesis in mismatch repair-deficient pseudomonas aeruginosa. PloS one 2009, 4:e8203.
  文献评价指标  
  下载次数:40次 浏览次数:7次