期刊论文详细信息
Sustainable Chemical Processes
Enzyme promiscuity: using the dark side of enzyme specificity in white biotechnology
Benu Arora2  Joyeeta Mukherjee2  Munishwar Nath Gupta1 
[1] Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
[2] Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
关键词: Green chemistry;    Enantioselectivity;    Enzymes in organic synthesis;    Catalytic promiscuity;    Enzyme specificity;   
Others  :  1216787
DOI  :  10.1186/s40508-014-0025-y
 received in 2014-08-27, accepted in 2014-12-10,  发布年份 2014
PDF
【 摘 要 】

Enzyme promiscuity can be classified into substrate promiscuity, condition promiscuity and catalytic promiscuity. Enzyme promiscuity results in far larger ranges of organic compounds which can be obtained by biocatalysis. While early examples mostly involved use of lipases, more recent literature shows that catalytic promiscuity occurs more widely and many other classes of enzymes can be used to obtain diverse kinds of molecules. This is of immense relevance in the context of white biotechnology as enzyme catalysed reactions use greener conditions.

【 授权许可】

   
2014 Arora et al.; licensee Springer.

【 预 览 】
附件列表
Files Size Format View
20150703010423472.pdf 909KB PDF download
Figure 2. 19KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Gupta MN, Raghava S: Relevance of chemistry to white biotechnology. Chem Cent J 2007, 1:17. BioMed Central Full Text
  • [2]Ulber R, Sell D: White Biotechnology. Springer-Verlag, Berlin; 2007.
  • [3]Kazlauskas RJ: Enhancing catalytic promiscuity for biocatalysis. Curr Opin Chem Biol 2005, 9:195-201.
  • [4]Khersonsky O, Tawfik DS: Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 2010, 79:471-505.
  • [5]Gupta MN, Kapoor M, Majumder AB, Singh V: Isozymes, moonlighting proteins and promiscous enzymes. Curr Sci 2011, 100:1152-1162.
  • [6]Gupta MN, Mukherjee J: Enzymology: some paradigm shifts over the years. Curr Sci 2013, 104:1178-1186.
  • [7]Fruton JS, Simmons S: General Biochemistry. Wiley and Sons Inc, New York; 1958.
  • [8]Dixon M, Webb EC: Enzymes. Academic Press, London; 1964.
  • [9]Hult K, Berglund P: Enzyme promiscuity: mechanism and applications. Trends Biotechnol 2007, 25:231-238.
  • [10]Babtie A, Tokuriki N, Hollfelder F: What makes an enzyme promiscuous. Curr Opin Chem Biol 2010, 14:1-8.
  • [11]Nobeli I, Favia AD, Thornton JM: Protein promiscuity and its implications for biotechnology. Nat Biotechnol 2009, 27:157-167.
  • [12]Goldsmith M, Tawfik DS: Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struc Biol 2012, 22:406-412.
  • [13]O’Brien PJ, Herschlag D: Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 1999, 6:R91-R105.
  • [14]Humble MS, Berglund P: Biocatalytic promiscuity. Eur J Org Chem 2011, 2011:3391-3401.
  • [15]Gupta MN: Enzyme function in organic solvents. Eur J Biochem 1992, 203:25-31.
  • [16]Vulfson EN, Halling PJ, Holland HL: Enzymes in Nonaqueous Solvents: Methods and Protocol. Humana Press, New Jersey; 2001.
  • [17]Martinek K, Levashov AV, Klyachko N, Khmelnitsky YL, Berezin IV: Micellar enzymology. Eur J Biochem 1986, 155:453-468.
  • [18]Martinek K, Berezin IV, Khmelnitsky YL, Klyachko NL, Levashov AV: Enzymes entrapped into reversed micelles of surfactants in organic solvents: key trends in applied enzymology (Biotechnology). Biocatal Biotransform 1987, 1:9-15.
  • [19]Park S, Kazalauskas RJ: Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 2001, 66:8395-8401.
  • [20]Park S, Kazalauskas RJ: Biocatalysis in ionic liquids – advantages beyond green technology. Curr Opin Biotechnol 2003, 14:432-437.
  • [21]Shah S, Gupta MN: Kinetic resolution of (±)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett 2007, 17:921-924.
  • [22]Zhao H: Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 2010, 85:891-907.
  • [23]Kumari V, Shah S, Gupta MN: Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from madhuca indica. Energy Fuels 2007, 21:368-372.
  • [24]Gupta MN: Methods in non-Aqueous Enzymology. Birkhauser Verlag, Basel; 2000.
  • [25]Laane C: Medium engineering for bioorganic synthesis. Biocatalysis 1987, 30:80-87.
  • [26]Gupta MN, Roy I: Enzymes in organic media: forms, function and applications. Eur J Biochem 2004, 271:2575-2583.
  • [27]Wu SH, Chu FY, Wang KT: Reversible enantioselectivity of enzymatic reactions by media. Bioorg Med Chem Lett 1991, 1:339-342.
  • [28]Tsai S, Huang CM: Enantioselective synthesis of (S)-ibuprofen ester prodrugs by lipases in cyclohexane. Enzyme Microb Technol 1999, 25:682-688.
  • [29]Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K: Denaturation capacity: a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis. Eur J Biochem 1991, 198:31-41.
  • [30]Mattiasson B, Holst O: Extractive Bioconversions. Marcel Dekker Inc, New York; 1991.
  • [31]Purich DL: Enzyme Kinetics: Catalysis & Control. Academic Press, London; 2010.
  • [32]Asuri P, Karajanagi S, Dordick JS, Kane R: Directed assembly of carbon nanotubes at liquid-liquid interfaces: nanoscale conveyors for interfacial biocatalysis. J Am Chem Soc 2006, 128:1046-1047.
  • [33]Ayres BT, Valenca GP, Franco TT: Two-step process for preparation of oligosaccharide propionates and acrylates using lipase and Cyclodextrin Glycosyl Transferase (CGTase). Sus Chem Processes 2014, 2:6. BioMed Central Full Text
  • [34]Boodhoo K, Harvey A: Process Intensification for Green Chemistry. Wiley and Sons Ltd, London; 2013.
  • [35]Luque R, Clark JH: Valorisation of food residues: waste to wealth using green chemical technologies. Sus Chem Processes 2013, 1:10. BioMed Central Full Text
  • [36]Pleissner D, Lin CS: Valorisation of food waste in biotechnological processes. Sus Chem Processes 2013, 1:21. BioMed Central Full Text
  • [37]Banerjee A, Singh V, Solanki K, Mukherjee J, Gupta MN: Combi-protein coated microcrystals of lipases for production of biodiesel from oil from spent coffee grounds. Sust Chem Processes 2013, 1:14. BioMed Central Full Text
  • [38]Busto E, Gotor-Fernandez V, Gotor V: Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev 2010, 39:4504-23.
  • [39]Kapoor M, Gupta MN: Lipase promiscuity and its biochemical applications. Process Biochem 2012, 47:555-569.
  • [40]Majumder AB, Ramesh NG, Gupta MN: Lipase catalyzed condensation reaction with a tricyclic diketone-yet another example of biocatalytic promiscuity. Tetrahedron Lett 2009, 50:5190-5193.
  • [41]Kapoor M, Majumder AB, Mukherjee J, Gupta MN: Decarboxylative aldol reaction catalysed by lipases and a protease in organic co-solvent mixtures and nearly anhydrous organic solvent media. Biocatal Biotransform 2012, 30:399-408.
  • [42]Majumder AB, Gupta MN: Lipase-catalyzed condensationreaction of 4-nitrobenzaldehyde with acetyl acetone in aqueous–organic cosolvent mixtures and in nearly anhydrous media. Synth Commun 2014, 44:818-826.
  • [43]Arora B, Pandey PS, Gupta MN: Lipase catalyzed Cannizzaro-type reaction with substituted benzaldehydes in water. Tetrahedron Lett 2014, 55:3920-3922.
  • [44]Zhang H: A novel one-pot multicomponent enzymatic synthesis of 2,4-disubstituted thiazoles. Catal Lett 2014, 144:928-934.
  • [45]Maruyama T, Nakajima M, Kondo H, Kawasaki K, Seki M, Goto M: Can lipases hydrolyse a peptide bonds? Enzym Microb Technol 2003, 32:655-657.
  • [46]Domling A, Ugi I: Multicomponent reactions with isocyanides. Angew Chem Int Ed 2000, 39:3168-3210.
  • [47]Kzossowski S, Wiraszka B, Berzozecki S, Ostaszewski R: Model studies on the first enzyme-catalyzed Ugi reaction. Org Lett 2013, 15:566-569.
  • [48]Branneby C, Carlqvist P, Magnusson A, Hult K, Brinck T, Berglund P: Carbon–carbon bonds by hydrolytic enzymes. J Am Chem Soc 2003, 125:874-875.
  • [49]Li C, Feng X-W, Wang N, Zhou Y-J, Yu X-Q: Biocatalytic promiscuity: the first lipase catalysed asymmetric aldol reaction. Green Chem 2008, 10:616-618.
  • [50]Liu ZQ, Xiang ZW, Shen Z, Wu Q, Lin XF: Enzymatic enantioselective aldol reactions of isatin derivatives with cyclic ketones under solvent free conditions. Biochimie 2014, 101:156-160.
  • [51]Li HH, He YH, Yuan Y, Guan Z: Nuclease p1: a new biocatalyst for direct asymmetric aldol reaction under solvent-free conditions. Green Chem 2011, 13:185-189.
  • [52]Jiang L, Wang B, Li R, Shen S, Yu H, Ye L: Catalytic promiscuity of Escherichia coli BioH esterase: application in the synthesis of 3,4-dihydropyran derivatives. Process Biochem 2014, 49:1135-1138.
  • [53]Fu JP, Gao N, Yang Y, Guan Z, He YH: Ficin-catalyzed asymmetric aldol reactions of heterocyclic ketones with aldehydes. J Mol Catal B Enzym 2013, 97:1-4.
  • [54]Hu W, Guan Z, Deng X, He YH: Enzyme catalytic promiscuity: the papain-catalyzed Knoevenagel reaction. Biochemie 2012, 94:656-661.
  • [55]Zheng H, Mei YJ, Du K, She QI, Zhang PF: Trypsin catalysed one-pot multicomponent synthesis of 4-thiazolidinones. Catal Lett 2013, 143:298-301.
  • [56]Chun K, Park SK, Kim HM, Choi Y, Kim MH, Park CH, Joe BY, Chun PG, Choi HM, Lee HY, Hong SH, Kim MS, Nam KY, Han G: Chromen-based TNF-α-converting enzyme (TACE) inhibitors: design, synthesis and biological evaluation. Bioorg Med Chem Lett 2008, 16:530-535.
  • [57]Khode S, Maddi V, Aragade P, Palkar M, Ronad PK, Mamledesai S, Thippeswamy AHM, Satyanarayana D: Synthesis and pharmacological evaluation of a novel series of 5-(substituted)-aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur J Med Chem 2009, 44:1682-1688.
  • [58]Wang CH, Guan Z, He YH: Biocatalytic domino reaction: synthesis of 2H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem 2011, 13:2048-2054.
  • [59]Zhou LH, Wang N, Zhang W, Xie ZB, Yu XQ: Catalytical promiscuity of α- amylase: synthesis of 3-substituted 2H-chromene derivatives via biocatalytic domino oxa-Michael/aldol condensations. J Mol Catal B Enzym 2013, 91:37-43.
  • [60]Gao N, Chen YL, He YH, Guan Z: Highly efficient and large-scalable glucoamylase catalyzed Henry reactions. RSC Adv 2013, 3:16850-16856.
  • [61]Green KD, Chen W, Houghton JL, Fridman M, Garneau-Tsodikova S: Exploring the substrate promiscuity of drug modifying enzymes for the chemoenzymatic generation of N-acylated amino glycosides. ChemBioChem 2010, 11:119-126.
  • [62]Werneburg M, Busch B, He J, Richter MEA, Xiang L, Moore BS, Roth M, Dahse HM, Hertweck C: Exploiting enzymatic promiscuity to engineer a focussed library of highly selective antifungal and anti proliferative aureothin analogs. J Am Chem Soc 2010, 132:10407-10413.
  • [63]Kula MR, Kragl U: Dehydrogenases in the synthesis of chiral compounds. In Stereoselective Biocatalysis. Edited by Patel RN. Marcel Dekker Inc, New York; 2000:839-866.
  • [64]Van der Donk WA, Zhao H: Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 2003, 14:421-426.
  • [65]Kroutil W, Mang H, Edegger K, Faber K: Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 2004, 8:120-126.
  • [66]Kurina-Sanz M, Bisogno FR, Lavandera I, Orden AA, Gotor V: Promiscuous substrate binding explains the enzymatic stereo and regiocontrolled synthesis of enantiopure hydroxyl ketones and diols. Adv Synth Catal 2009, 351:1842-1848.
  • [67]Ferreira-Silve B, Lavandra I, Kern A, Faber K, Kroutil W: Chemo-promiscuity of alcohol dehydrogenases: reduction of phenylacetaldoxime to the alcohol. Terahedron 2010, 66:3410-3414.
  • [68]di Salvo ML, Florio R, Paiardini A, Vivoli M, D’Aguanno M, Contestabile R: Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporine biosynthesis and a model of catalytic promiscuity. Arch Biochem Biophys 2013, 529:55-65.
  • [69]Chen XY, Liang YR, Xu FL, Wu Q, Lin XF: Stereoselective synthesis of spiro[5.5]undecane derivatives via biocatalytic [5 + 1] double Michael additions. J Mol Catal B Enzym 2013, 97:18-22.
  • [70]Grulich M, Stepanek V, Kyslik P: Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol Adv 2013, 31:1458-1472.
  • [71]Soskine M, Tawfik DS: Mutational effects and the evolution of new protein functions. Nature Rev Genet 2010, 11:572-582.
  • [72]Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Hocker B, Sterner R, Raushel FM: Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 2013, 135:11670-11677.
  • [73]Jung S, Kim J, Park S: Rational design for enhancing promiscuous activity of Candida antarctica lipase B: a clue for the molecular basis of dissimilar activities between lipase and serine-protease. RSC Adv 2013, 3:2590-2594.
  • [74]He YH, Hu W, Guan Z: Enzyme catalysed direct three component Aza Diels Alder reaction using hen egg white lysozyme. J Org Chem 2012, 77:200-207.
  • [75]Baas BJ, Zandvoort E, Geertsema EM, Poelarends GJ: Recent advances in the study of enzyme promiscuity in the tautomerase super family. ChemBioChem 2013, 14:917-926.
  • [76]Jarvo ER, Miller SJ: Amino acids and peptides as asymmetric organocatalysts. Tetrahedron 2002, 58:2481-2495.
  • [77]Notz W, Tanaka F, Barbas CF III: Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael and Diels-Alder reactions. Acc Chem Res 2004, 37:580-591.
  • [78]Liu B, Wu Q, Lv D, Lin X: Modulating the synthetase activity of penicillin G acylase in organic media by addition of N-methylimidazole: using vinyl acetate as activated acyl donor. J Biotechnol 2011, 153:111-115.
  • [79]Yang F, Wang Z, Wang H, Zhang H, Yue H, Wang L: Enzyme catalytic promiscuity: lipase catalyzed synthesis of substituted 2H-chromenes by a three-component reaction. RSC Adv 2014, 4:25633-25636.
  • [80]Jiang L, Yu HW: An example of enzymatic promiscuity: the Baylis-Hillman reaction catalyzed by a biotin esterase (BioH) from Escherichia coli. Biotechnol Lett 2014, 36:99-103.
  • [81]Xie ZB, Wang N, Wu WX, Le ZG, Yu XQ: Trypsin-catalyzed tandem reaction: one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones by in situ formed acetaldehyde. J Biotechnol 2014, 170:1-5.
  • [82]Jia B, Cheong GW, Zhang S: Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles 2013, 17:193-203.
  • [83]Mittag T, Kay LE, Forman-Kay JD: Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 2010, 23:105-116.
  • [84]Skolnick J, Gao M: Interplay of physics and evolution in the likely origin of protein biochemical function. Proc Natl Acad Sci 2013, 110:9344-9349.
  • [85]Hou L, Honaker MT, Shireman LM, Balogh LM, Roberts AG, Ng K, Nath A, Atkins WM: Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 2007, 282:23263-23274.
  • [86]Honaker MT, Acchione M, Sumida JP, Atkins WM: Ensemble perspective for catalytic promiscuity: calorimetric analysis of the active site conformational landscape of a detoxification enzyme. J Biol Chem 2011, 286:42769-42776.
  • [87]Honaker MT, Acchione M, Zhang W, Mannervik B, Atkins WM: Enzymatic detoxification, conformational selection, and the role of molten globule active sites. J Biol Chem 2013, 288:18599-18611.
  • [88]Skopelitou K, Dhavala P, Papageorgiou AC, Labrou NE: A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS ONE 2012, 7:e34263.
  • [89]Labrou NE: Affinity chromatography. In Methods for Affinity-Based Separations of Enzymes and Proteins. Edited by Gupta MN. Birkhauser Verlag, Basel; 2002:16-28.
  • [90]Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM: Molecular Biology of the Gene. fourth edition. The Benjamin/Cummings Publishing Company Inc, California; 1987.
  文献评价指标  
  下载次数:11次 浏览次数:23次