期刊论文详细信息
Biotechnology for Biofuels
Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
Mekonnen M Demeke3  Heiko Dietz2  Yingying Li3  María R Foulquié-Moreno3  Sarma Mutturi4  Sylvie Deprez1  Tom Den Abt3  Beatriz M Bonini3  Gunnar Liden4  Françoise Dumortier3  Alex Verplaetse1  Eckhard Boles2  Johan M Thevelein3 
[1] Laboratory of Enzyme, Fermentation and Brewing Technology, KAHO Sint-Lieven University College, KU Leuven Association, Gebroeders De Smetstraat 1, 9000, Ghent, Flanders, Belgium
[2] Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
[3] Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
[4] Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
关键词: Evolutionary engineering;    Saccharomyces cerevisiae;    Inhibitor tolerance;    D-xylose isomerase;    D-xylose fermentation;    Lignocellulose;    Bioethanol;   
Others  :  798012
DOI  :  10.1186/1754-6834-6-89
 received in 2013-03-06, accepted in 2013-06-12,  发布年份 2013
PDF
【 摘 要 】

Background

The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production.

Results

An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate.

Conclusions

An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.

【 授权许可】

   
2013 Demeke et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706093733646.pdf 2651KB PDF download
Figure 14. 77KB Image download
Figure 13. 47KB Image download
Figure 12. 41KB Image download
Figure 11. 76KB Image download
Figure 10. 53KB Image download
Figure 9. 45KB Image download
Figure 8. 36KB Image download
Figure 7. 92KB Image download
Figure 6. 109KB Image download
Figure 5. 110KB Image download
Figure 4. 37KB Image download
Figure 3. 108KB Image download
Figure 2. 50KB Image download
Figure 1. 105KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

【 参考文献 】
  • [1]Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 2001, 56:17-34.
  • [2]Lau MW, Gunawan C, Balan V, Dale BE: Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 2010, 3:11. BioMed Central Full Text
  • [3]Ebringerová A, Hromádková Z, Heinze T: Hemicellulose. In Polysaccharides I. Volume 186. Edited by Heinze T. Berlin. Heidelberg: Springer-Verlag; 2013:1-67.
  • [4]Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74:937-953.
  • [5]Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87:1303-1315.
  • [6]Almeida JR, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 2007, 82:340-349.
  • [7]Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO: Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 2009, 75:6132-6141.
  • [8]Huang CF, Lin TH, Guo GL, Hwang WS: Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol 2009, 100:3914-3920.
  • [9]Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF: Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 2007, 108:147-177.
  • [10]Nevoigt E: Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2008, 72:379-412.
  • [11]Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hagerdal B, Gorwa-Grauslund MF: The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2006, 93:665-673.
  • [12]Johansson B, Christensson C, Hobley T, Hahn-Hagerdal B: Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 2001, 67:4249-4255.
  • [13]Johansson B, Hahn-Hagerdal B: The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2002, 2:277-282.
  • [14]Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF: Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2009, 2:9. BioMed Central Full Text
  • [15]Runquist D, Hahn-Hagerdal B, Bettiga M: Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 2010, 76:7796-7802.
  • [16]Olofsson K, Runquist D, Hahn-Hagerdal B, Liden G: A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express 2011, 1:4. BioMed Central Full Text
  • [17]Peng B, Shen Y, Li X, Chen X, Hou J, Bao X: Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 2012, 14:9-18.
  • [18]Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hagerdal B: Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 1996, 62:4648-4651.
  • [19]Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, De Laat WT, Den Ridder JJ, Op Den Camp HJ, Van Dijken JP, Pronk JT: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae . FEMS Yeast Res 2003, 4:69-78.
  • [20]Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Van Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5:399-409.
  • [21]Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF: Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels 2008, 1:16. BioMed Central Full Text
  • [22]Chang Q, Griest TA, Harter TM, Petrash JM: Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Biochim Biophys Acta 2007, 1773:321-329.
  • [23]Traff KL, Jonsson LJ, Hahn-Hagerdal B: Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 2002, 19:1233-1241.
  • [24]Toivari MH, Salusjarvi L, Ruohonen L, Penttila M: Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2004, 70:3681-3686.
  • [25]Traff KL, Otero Cordero RR, Van Zyl WH, Hahn-Hagerdal B: Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 2001, 67:5668-5674.
  • [26]Aguilera J, Prieto JA: The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 2001, 39:273-283.
  • [27]Brat D, Boles E, Wiedemann B: Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 2009, 75:2304-2311.
  • [28]Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP, Pronk JT: Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 2005, 5:925-934.
  • [29]Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, Van Maris AJ: Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 2009, 75:907-914.
  • [30]Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund MF: Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 2006, 5:18. BioMed Central Full Text
  • [31]Van Maris AJ, Winkler AA, Kuyper M, De Laat WT, Van Dijken JP, Pronk JT: Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 2007, 108:179-204.
  • [32]Boles E, Schulte F, Miosga T, Freidel K, Schluter E, Zimmermann FK, Hollenberg CP, Heinisch JJ: Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J Bacteriol 1997, 179:2987-2993.
  • [33]Wiedemann B, Boles E: Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 2008, 74:2043-2050.
  • [34]Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E: Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
  • [35]Subtil T, Boles E: Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5:14. BioMed Central Full Text
  • [36]Wisselink HW, Toirkens MJ, Del Rosario Franco Berriel M, Winkler AA, Van Dijken JP, Pronk JT, Van Maris AJ: Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 2007, 73:4881-4891.
  • [37]Wahlbom CF, Van Zyl WH, Jonsson LJ, Hahn-Hagerdal B, Otero RR: Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 2003, 3:319-326.
  • [38]Kuhn A, Van Zyl C, Van Tonder A, Prior BA: Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 1995, 61:1580-1585.
  • [39]Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR: Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett 2011, 33:277-284.
  • [40]Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT: Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 2011, 102:10868-10874.
  • [41]Bellissimi E, Van Dijken JP, Pronk JT, Van Maris AJ: Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009, 9:358-364.
  • [42]Wright J, Bellissimi E, De Hulster E, Wagner A, Pronk JT, Van Maris AJ: Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2011, 11:299-306.
  • [43]Persson P, Larsson S, Jonsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thorneby L, Gorton L: Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 2002, 79:694-700.
  • [44]Ask M, Olofsson K, Felice TD, Ruohonen L, Penttilä M, Lidén G, Olsson L: Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 2012, 47:1452-1459.
  • [45]Mutturi S, Liden G: Effect of temperature on simultaneous saccharification and fermentation of pretreated spruce and arundo. Ind Eng Chem Res 2013, 52:1244-1251.
  • [46]Olofsson K, Rudolf A, Liden G: Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 2008, 134:112-120.
  • [47]Liu JJ, Ding WT, Zhang GC, Wang JY: Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination. Appl Microbiol Biotechnol 2011, 91:1239-1246.
  • [48]Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM: Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 2013, 9(6):e1003548.
  • [49]Bellissimi E, Richards C: Yeast propagation. In The alcohol textbook, a reference for the beverage, fuel and industrial alcohol industries. 5th edition. Edited by Ingledew WM, Kelsall DR, Austin GD, Kluhspies C. Nottingham: University Press; 2009:145-159.
  • [50]Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X: An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 2012, 96:1079-1091.
  • [51]Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611-622.
  • [52]Chu BC, Lee H: Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 2007, 25:425-441.
  • [53]Hector RE, Dien BS, Cotta MA, Qureshi N: Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol 2011, 38:1193-1202.
  • [54]Liu E, Hu Y: Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 2010, 48:204-210.
  • [55]Sonderegger M, Sauer U: Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 2003, 69:1990-1998.
  • [56]Jingping G, Hongbing S, Gang S, Hongzhi L, Wenxiang P: A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol. J Ind Microbiol Biotechnol 2012, 39:777-787.
  • [57]Zhang W, Geng A: Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 2012, 5:46. BioMed Central Full Text
  • [58]Gong J, Zheng H, Wu Z, Chen T, Zhao X: Genome shuffling: Progress and applications for phenotype improvement. Biotechnol Adv 2009, 27:996-1005.
  • [59]Kuyper M, Winkler AA, Van Dijken JP, Pronk JT: Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 2004, 4:655-664.
  • [60]Reyes LH, Winkler J, Kao KC: Visualizing evolution in real-time method for strain engineering. Front Microbiol 2012, 3:198.
  • [61]Almario MP: Reyes LH. Kao KC: Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng; 2013.
  • [62]Elena SF, Lenski RE: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 2003, 4:457-469.
  • [63]Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF: Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant. Saccharomyces cerevisiae. Microb Cell Fact 2007., 6
  • [64]Schmidt-Dannert C, Arnold FH: Directed evolution of industrial enzymes. Trends Biotechnol 1999, 17:135-136.
  • [65]Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74:25-33.
  • [66]Hou L: Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol Lett 2009, 31:671-677.
  • [67]Huxley C, Green ED, Dunham I: Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 1990, 6:236.
  • [68]Gietz RD, Schiestl RH, Willems AR, Woods RA: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995, 11:355-360.
  • [69]Gietz RD, Schiestl RH: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2007, 2:31-34.
  • [70]Hoffman CS, Winston F: A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987, 57:267-272.
  • [71]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 2nd edition. New York: Cold Spring Harbor; 1989.
  • [72]Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 1988, 16:6127-6145.
  • [73]Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH: A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 1996, 24:2519-2524.
  • [74]Carter Z, Delneri D: New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 2010, 27:765-775.
  • [75]Popolo L, Vanoni M, Alberghina L: Control of the yeast cell cycle by protein synthesis. Exp Cell Res 1982, 142:69-78.
  • [76]Kersters-Hilderson H, Callens M, Van Opstal O, Vangrysperre W, De Bruyne CK: Kinetic characterization of D-xylose isomerases by enzymatic assays ising D-sorbitol dehydrogenase. Enzyme Microb Technol 1987, 9:145-148.
  • [77]Leitão L, Prista C, Moura TF, Loureiro-Dias MC, Soveral G: Grapevine aquaporins: gating of a tonoplast intrinsic protein (TIP2;1) by cytosolic pH. PLoS One 2012, 7:e33219.
  • [78]Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquie-Moreno MR, Goovaerts A, Souvereyns K, et al.: Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 2012, 22:975-984.
  • [79]Bertilsson M, Olofsson K, Liden G: Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. Biotechnol Biofuels 2009, 2:8. BioMed Central Full Text
  文献评价指标  
  下载次数:152次 浏览次数:17次