| Biotechnology for Biofuels | |
| Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24 | |
| Ronald E Hector1  Bruce S Dien1  Michael A Cotta1  Jeffrey A Mertens1  | |
| [1] Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA | |
| 关键词: Lignocellulose; Ethanol; D-xylose isomerase; Bacteroides; Prevotella ruminicola; Saccharomyces cerevisiae; | |
| Others : 798020 DOI : 10.1186/1754-6834-6-84 |
|
| received in 2013-04-03, accepted in 2013-05-22, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation.
Results
Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain’s ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM.
Conclusion
This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.
【 授权许可】
2013 Hector et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140706094033648.pdf | 1142KB | ||
| Figure 4. | 51KB | Image | |
| Figure 3. | 39KB | Image | |
| Figure 2. | 48KB | Image | |
| Figure 1. | 53KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 2009, 8:40. BioMed Central Full Text
- [2]Bera AK, Sedlak M, Khan A, Ho NWY: Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol 2010, 87:1803-1811.
- [3]Van-Vleet JH, Jeffries TW: Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009, 20:300-306.
- [4]Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74:937-953.
- [5]Scalcinati G, Otero JM, Van-Vleet JR, Jeffries TW, Olsson L, Nielsen J: Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 2012, 12:582-597.
- [6]Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611-622.
- [7]Sonderegger M, Sauer U: Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microb 2003, 69:1990-1998.
- [8]Jeffries TW, Jin YS: Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 2004, 63:495-509.
- [9]Ho NWY, Chen Z, Brainard AP: Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microb 1998, 64:1852-1859.
- [10]Richard P, Toivari MH, Penttilä M: The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 2000, 190:39-43.
- [11]Harhangi HR, Akhmanova AS, Emmens R, van der-Drift C, De-Laat WT, Van-Dijken JP, Jetten MS, Pronk JT, Op den Camp HJ: Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 2003, 180:134-141.
- [12]Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, De-Laat WT, Den-Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 2003, 4:69-78.
- [13]Lee SM, Jellison T, Alper HS: Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2012, 78:5708-5716.
- [14]Brat D, Boles E, Wiedemann B: Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 2009, 75:2304-2311.
- [15]Ma M, Liu Z, Moon J: Genetic engineering of inhibitor-tolerant Saccharomyces cerevisiae for improved xylose utilization in ethanol production. BioEnergy Research 2012, 5:459-469.
- [16]Aeling KA, Salmon KA, Laplaza JM, Li L, Headman JR, Hutagalung AH, Picataggio S: Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2012, 39:1597-1604.
- [17]Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A: Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 2009, 82:1067-1078.
- [18]Matte A, Forsberg CW, Gibbins AMV: Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Can J Microbiol 1992, 38:370-376.
- [19]Dodd D, Mackie RI, Cann IK: Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 2011, 79:292-304.
- [20]Avgustin G, Wright F, Flint HJ: Genetic diversity and phylogenetic relationships among strains of Prevotella (Bacteroides) ruminicola from the rumen. Int J Syst Bacteriol 1994, 44:246-255.
- [21]Avgustin G, Wallace RJ, Flint HJ: Phenotypic diversity among ruminal Isolates of Prevotella ruminicola: Proposal of Prevotella brevis sp. nov., Prevotella byantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. International Journal of Systematic Bacteriology. Int J Syst Bacteriol 1997, 47:284-288.
- [22]Funke M, Diederichs S, Kensy F, Müller C, Büchs J: The baffled microtiter plate: Increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 2009, 103:1118-1128.
- [23]Warringer J, Blomberg A: Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 2003, 20:53-67.
- [24]Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Van-Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5:399-409.
- [25]Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF: Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 2007, 6:5. BioMed Central Full Text
- [26]Parachin NS, Gorwa-Grauslund MF: Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. Biotechnol Biofuels 2011, 4:9. BioMed Central Full Text
- [27]Hector RE, Dien BS, Cotta MA, Qureshi N: Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol 2011, 38:1193-1202.
- [28]Bera AK, Ho NW, Khan A, Sedlak M: A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biot 2011, 38:617-626.
- [29]Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF: The expression of a Pichia stipitis xylose reductase mutant with higher Km for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2006, 93:665-673.
- [30]Petschacher B, Nidetzky B: Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 2008, 7:9. BioMed Central Full Text
- [31]Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2009, 2:9. BioMed Central Full Text
- [32]Krahulec S, Klimacek M, Nidetzky B: Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 2012, 158:192-202.
- [33]Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G: Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 2009, 19:2271-2278.
- [34]Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D: Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. P Natl Acad Sci USA 2002, 99:16144-16149.
- [35]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
- [36]Gietz D, Woods RA: Transformation of yeasts by the lithium acetate/single-stranded carrier/polyethylene glycol method. Methods Enzymol 2002, 350:87-96.
- [37]Amberg BC, Burke DJ, Strathern JN: Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. 2005 edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2005.
- [38]Whitehead TR, Cotta MA, Collins MD, Falsen E, Lawson PA: Bacteroides coprosuis sp. nov., isolated from swine-manure storage pits. Int J Syst Evol Microbiol 2005, 55:2515-2518.
- [39]Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P: Multifunctional yeast high-copy-number shuttle vectors. Gene 1992, 110:119-122.
- [40]Hector RE, Mertens JA, Bowman MJ, Nichols NN, Cotta MA, Hughes SR: Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast 2011, 28:645-660.
PDF