期刊论文详细信息
Biotechnology for Biofuels
Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity
Masaki Muto1  Masayoshi Tanaka3  Yue Liang3  Tomoko Yoshino3  Mitsufumi Matsumoto2  Tsuyoshi Tanaka1 
[1] JST, CREST, Sanbancho 5, Chiyoda-ku 102-0075, Tokyo, Japan
[2] Biotechnology Laboratory, Electric Power Development Co., Ltd., Yanagisaki-machi, Wakamatsu-ku 808-0111, Kitakyusyu, Japan
[3] Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
关键词: Metabolic engineering;    Biodiesel fuel;    Glycerol kinase;    Mixotrophic cultivation;    Fistulifera solaris;    Oleaginous microalgae;   
Others  :  1089695
DOI  :  10.1186/s13068-014-0184-9
 received in 2014-05-09, accepted in 2014-12-11,  发布年份 2015
PDF
【 摘 要 】

Background

Microalgal oil is a promising alternative feedstock for biodiesel fuel (BDF). Mixotrophic cultivation with glycerol, the primary byproduct of BDF production, may be used to optimize BDF production. This strategy would reduce costs through glycerol recycling and improve lipid productivity and biomass productivity by overcoming the growth retardation caused by decreased light penetration in high-density culture.

Results

Overexpression of the endogenous glycerol kinase (GK) gene in an oleaginous marine diatom, Fistulifera solaris JPCC DA0580, accelerates glycerol metabolism and improves lipid and biomass productivities. Two candidates were selected from a collection of 90 G418-resistant clones, based on growth and confirmation of genome integration. GK gene expression was higher in the selected clones (GK1_7 and GK2_16) than in the wild-type culture. The GK2_16 clone achieved a 12% increase in lipid productivity.

Conclusion

We have demonstrated the potential of metabolic engineering in oleaginous microalgae to improve lipid productivity. Metabolic engineering techniques can be used to optimize BDF production.

【 授权许可】

   
2015 Muto et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128001301667.pdf 590KB PDF download
Figure 3. 22KB Image download
Figure 2. 18KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Georgianna DR, Mayfield SP: Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 2012, 488:329-335.
  • [2]Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC: Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 2012, 3:686.
  • [3]Banerjee A, Sharma R, Chisti Y, Banerjee UC: Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 2002, 22:245-279.
  • [4]Wan MX, Liu P, Xia JL, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie ZY, Qiu GZ: The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 2011, 91:835-844.
  • [5]Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T: Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580 - a high triglyceride producer. Mar Biotechnol 2013, 15:48-55.
  • [6]Matsumoto M, Tanaka T, Matsunaga T: Performance of marine diatom Navicula sp. JPCC DA0580 as high lipids producer for biofuel production. J Biosci Bioeng 2009, 108:S42-S42.
  • [7]Matsumoto M, Mayama S, Nemoto M, Fukuda Y, Muto M, Yoshino T, et al. Morphological and molecular phylogenetic analysis of the high triglyceride-producing marine diatom, Fistulifera solaris sp. nov. (Bacillariophyceae). Phycol Res 2014;62:257–68.
  • [8]Satoh A, Ichii K, Matsumoto M, Kubota C, Nemoto M, Tanaka M, Yoshino T, Matsunaga T, Tanaka T: A process design and productivity evaluation for oil production by indoor mass cultivation of a marine diatom, Fistulifera sp. JPCC DA0580. Bioresource Technol 2013, 137:132-138.
  • [9]Liang Y, Maeda Y, Yoshino T, Matsumoto M, Tanaka T: Profiling of fatty acid methyl esters from the oleaginous diatom Fistulifera sp. strain JPCC DA0580 under nutrition-sufficient and -deficient conditions. J Appl Phychol 2014, 26:2295-2302.
  • [10]Sato R, Maeda Y, Yoshino T, Tanaka T, Matsumoto M: Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors. J Biosci Bioeng 2014, 114:720-724.
  • [11]Tanaka T, Fukuda Y, Yoshino T, Maeda Y, Muto M, Matsumoto M, Mayama S, Matsunaga T: High-throughput pyrosequencing of the chloroplast genome of a highly neutral-lipid-producing marine pennate diatom, Fistulifera sp. strain JPCC DA0580. Photosynth Res 2011, 109:223-229.
  • [12]Thompson JC, He BB: Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 2006, 22:261-265.
  • [13]Johnson DT, Taconi KA: The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 2007, 26:338-348.
  • [14]Ceron Garcia MC, Camacho FG, Miron AS, Sevilla JMF, Chisti Y, Grima EM: Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechn 2006, 16:689-694.
  • [15]Liang YN, Sarkany N, Cui Y: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 2009, 31:1043-1049.
  • [16]Kong WB, Song H, Cao YT, Yang H, Hua SF, Xia CG: The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr J Biotechnol 2011, 10:11620-11630.
  • [17]Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO: Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnol Bioeng 2013, 110:343-347.
  • [18]Griffiths G, Stobart AK, Stymne S: The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed. Biochem J 1985, 230:379-388.
  • [19]Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B: Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 2007, 5:802-814.
  • [20]Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH: Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 2013, 110:19748-19753.
  • [21]Radakovits R, Eduafo PM, Posewitz MC: Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 2011, 13:89-95.
  • [22]Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE: Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 2001, 292:2073-2075.
  • [23]Demirbas A, Demirbas MF: Importance of algae oil as a source of biodiesel. Energy Convers Manage 2011, 52:163-170.
  • [24]Kilian O, Benemann CSE, Niyogi KK, Vick B: High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 2011, 108:21265-21269.
  • [25]Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, et al.: The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004, 306:79-86.
  • [26]Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA: Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 2010, 107:258-268.
  • [27]Apt KE, KrothPancic PG, Grossman AR: Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996, 252:572-579.
  • [28]Eastmond PJ: Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J 2004, 37:617-625.
  • [29]Vigeolas H, Geigenberger P: Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta 2004, 219:827-835.
  • [30]Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T: Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotech 2010, 161:483-490.
  • [31]Guillard RRL, Ryther JH: Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 1962, 8:229-239.
  • [32]Couso I, Vila M, Rodriguez H, Vargas MA, Leon R: Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Progr 2011, 27:54-60.
  文献评价指标  
  下载次数:32次 浏览次数:3次