期刊论文详细信息
BMC Biotechnology
Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease
Mauricio S Antunes2  J Jeff Smith1  Derek Jantz1  June I Medford2 
[1] Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
[2] Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
关键词: Targeted marker excision;    I-CreI;    Homing endonuclease;   
Others  :  1134529
DOI  :  10.1186/1472-6750-12-86
 received in 2012-03-12, accepted in 2012-10-26,  发布年份 2012
PDF
【 摘 要 】

Background

A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant genome is needed.

Results

We engineered and tested a synthetic homing endonuclease, PB1, derived from the I-CreI endonuclease of Chlamydomonas reinhardtii, which was re-designed to recognize and cleave a newly specified DNA sequence. We demonstrate that an activity-optimized version of the PB1 endonuclease, under the control of a heat-inducible promoter, is capable of targeting DNA breaks to an introduced PB1 recognition site in the genome of Arabidopsis thaliana. We further demonstrate that this engineered endonuclease can very efficiently excise unwanted transgenic DNA, such as an herbicide resistance marker, from the genome when the marker gene is flanked by PB1 recognition sites. Interestingly, under certain conditions the repair of the DNA junctions resulted in a conservative pairing of recognition half sites to remove the intervening DNA and reconstitute a single functional recognition site.

Conclusion

These results establish parameters needed to use engineered homing endonucleases for the modification of endogenous loci in plant genomes.

【 授权许可】

   
2012 Antunes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306010744714.pdf 681KB PDF download
Figure 3. 38KB Image download
Figure 2. 56KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Lemaux PG: Genetically engineered plants and foods: a scientist’s analysis of the issues (Part II). Annu Rev Plant Biol 2009, 60:511-559.
  • [2]Dale EC, Ow DW: Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 1991, 88(23):10558-10562.
  • [3]Fladung M, Becker D: Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) using site-specific recombination systems. Plant Biol (Stuttg) 2010, 12(2):334-340.
  • [4]Luo KM, Duan H, Zhao DG, Zheng XL, Deng W, Chen YQ, Stewart CN, McAvoy R, Jiang XN, Wu YH, et al.: ‘GM-gene-deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 2007, 5(2):263-274.
  • [5]Mlynarova L, Nap JP: A self-excising Cre recombinase allows efficient recombination of multiple ectopic heterospecific lox sites in transgenic tobacco. Transgenic Res 2003, 12(1):45-57.
  • [6]Moore SK, Srivastava V: Efficient deletion of transgenic DNA from complex integration locus of rice mediated by Cre/lox recombination system. Crop Sci 2006, 46(2):700-705.
  • [7]Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russell S: Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 2010, 73(6):617-628.
  • [8]Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J: Gene targeting in Arabidopsis. Plant J 2001, 28(6):671-677.
  • [9]Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S: Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 2002, 20(10):1030-1034.
  • [10]Shaked H, Melamed-Bessudo C, Levy AA: High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 2005, 102(34):12265-12269.
  • [11]Iida S, Terada R: Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 2005, 59(1):205-219.
  • [12]Chilton MDM, Que QD: Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: New insights on the mechanism of T-DNA integration. Plant Physiol 2003, 133(3):956-965.
  • [13]D’Halluin K, Vanderstraeten C, Stals E, Cornelissen M, Ruiter R: Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 2008, 6(1):93-102.
  • [14]Puchta H, Dujon B, Hohn B: Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 1996, 93(10):5055-5060.
  • [15]Tzfira T, Frankman LR, Vaidya M, Citovsky V: Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 2003, 133(3):1011-1023.
  • [16]Siebert R, Puchta H: Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 2002, 14(5):1121-1131.
  • [17]Yang MZ, Djukanovic V, Stagg J, Lenderts B, Bidney D, Falco SC, Lyznik LA: Targeted mutagenesis in the progeny of maize transgenic plants. Plant Mol Biol 2009, 70(6):669-679.
  • [18]Petolino JF, Doyon Y, Baker L, DeKelver R, Worden A, Umov F, Cai C: Zinc finger nuclease-mediated gene targeting in plants. In Vitro Cell Dev Biol Anim 2008, 44:S20-S21.
  • [19]Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF: High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 2005, 44(4):693-705.
  • [20]Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin CI, Chandrasegaran S: Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun 2009, 388(1):56-61.
  • [21]Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS: Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 2009, 19(7):1279-1288.
  • [22]Mani M, Kandavelou K, Dy FJ, Durai S, Chandrasegaran S: Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun 2005, 335(2):447-457.
  • [23]Porteus MH: Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 2006, 13(2):438-446.
  • [24]Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005, 435(7042):646-651.
  • [25]Townsend JA, Wright DA, Winfrey RJ, Fu FL, Maeder ML, Joung JK, Voytas DF: High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459(7245):442-445.
  • [26]Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li XH, Pierick CJ, Dobbs D, Peterson T, et al.: High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 2010, 107(26):12028-12033.
  • [27]Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang JB, Friedman G, et al.: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011, 29(9):U816-U872.
  • [28]Pattanayak V, Ramirez CL, Joung JK, Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011, 8(9):765-770.
  • [29]Pruett-Miller SM, Reading DW, Porter SN, Porteus MH: Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 2009, 5(2):e1000376.
  • [30]Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011, 39(17):7879-7879.
  • [31]Miller JC, Holmes MC, Wang JB, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, et al.: An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007, 25(7):778-785.
  • [32]Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, et al.: A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011, 29(2):U143-U149.
  • [33]Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, et al.: Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 2006, 355(3):443-458.
  • [34]Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, et al.: Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 2010, 61(1):176-187.
  • [35]Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R, Stoddard BL, Seligman LM: Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 2004, 342(1):31-41.
  • [36]Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H: In planta gene targeting. P Natl Acad Sci USA 2012, 109(19):7535-7540.
  • [37]Thompson AJ, Yuan XQ, Kudlicki W, Herrin DL: Cleavage and recognition pattern of a double-strand-specific endonuclease (I-Crei) Encoded by the Chloroplast 23S-Ribosomal-Rna Intron of Chlamydomonas-Reinhardtii. Gene 1992, 119(2):247-251.
  • [38]Heath PJ, Stephens KM, Monnat RJ, Stoddard BL: The structure of I-CreI, a Group I intron-encoded homing endonuclease. Nat Struct Biol 1997, 4(6):468-476.
  • [39]Jurica NS, Monnat RJ, Stoddard BL: DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell 1998, 2(4):469-476.
  • [40]Stephens KM, Monnat RJ, Heath PJ, Stoddard BL: Crystallization and preliminary X-ray studies of I-CreI: A group I intron-encoded endonuclease from C-reinhardtii. Protein Struct Funct Genet 1997, 28(1):137-139.
  • [41]Seligman LM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL: Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 2002, 30(17):3870-3879.
  • [42]Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, et al.: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011, 29(9):816-823.
  • [43]Puchta H: The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 2005, 56(409):1-14.
  • [44]Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S: Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol 2007, 144(2):846-856.
  • [45]Rebuzzini P, Khoriauli L, Azzalin CM, Magnani E, Mondello C, Giulotto E: New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair 2005, 4(5):546-555.
  • [46]Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, et al.: Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459(7245):437-441.
  • [47]Lehman CW, Trautman JK, Carroll D: Illegitimate recombination in Xenopus: characterization of end-joined junctions. Nucleic Acids Res 1994, 22(3):434-442.
  • [48]Nicolas AL, Munz PL, Young CS: A modified single-strand annealing model best explains the joining of DNA double-strand breaks mammalian cells and cell extracts. Nucleic Acids Res 1995, 23(6):1036-1043.
  • [49]Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K, Abe K, Ichikawa H, Valentine L, et al.: Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 2006, 25(23):5579-5590.
  • [50]Lloyd A, Plaisier CL, Carroll D, Drews GN: Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 2005, 102(6):2232-2237.
  • [51]Chevalier B, Turmel M, Lemieux C, Monnat RJ Jr, Stoddard BL: Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J Mol Biol 2003, 329(2):253-269.
  • [52]Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Paques F, Duchateau P: Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 2010, 38(6):2006-2018.
  • [53]Seligman LM, Stephens KM, Savage JH, Monnat RJ: Genetic analysis of the Chlamydomonas reinhardtii I-CreI mobile intron homing system in Escherichia coli. Genetics 1997, 147(4):1653-1664.
  • [54]Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T: DNA-binding specificity is a major determinant of the activity and toxicity of zinc-nucleases. Mol Ther 2008, 16(2):352-358.
  • [55]Takahashi T, Naito S, Komeda Y: The Arabidopsis Hsp18.2 Promoter/Gus Gene Fusion in Transgenic Arabidopsis Plants - a Powerful Tool for the Isolation of Regulatory Mutants of the Heat-Shock Response. Plant J 1992, 2(5):751-761.
  • [56]Hare PD, Chua NH: Excision of selectable marker genes from transgenic plants. Nature Biotechnol 2002, 20(6):575-580.
  • [57]Hohn B, Levy AA, Puchta H: Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 2001, 12(2):139-143.
  • [58]Puchta H: Towards the ideal GMP: Homologous recombination and marker gene excision. J Plant Physiol 2003, 160(7):743-754.
  • [59]Puchta H: Marker-free transgenic plants. Plant Cell Tissue and Organ Culture 2003, 74(2):123-134.
  • [60]Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998, 16(6):735-743.
  • [61]Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 1962, 15:473-497.
  • [62]Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-Directed Mutagenesis by Overlap Extension Using the Polymerase Chain-Reaction. Gene 1989, 77(1):51-59.
  • [63]Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM: The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 1987, 15(8):3257-3273.
  • [64]Xiang C, Han P, Lutziger I, Wang K, Oliver DJ: A mini binary vector series for plant transformation. Plant Mol Biol 1999, 40(4):711-717.
  文献评价指标  
  下载次数:10次 浏览次数:9次