期刊论文详细信息
BMC Biotechnology
Multimodal in vivo imaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed BMSC homing
Bert R Everaert4  Irene Bergwerf2  Nathalie De Vocht3  Peter Ponsaerts2  Annemie Van Der Linden3  Jean-Pierre Timmermans1  Christiaan J Vrints5 
[1] Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
[2] Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
[3] BioImaging Laboratory, University of Antwerp, Antwerp, Belgium
[4] Laboratory of Cell Biology and Histology, Groenenborgerlaan 171, Antwerp, 2020, Belgium
[5] Laboratory of Cellular and Molecular Cardiology, Antwerp University Hospital, Antwerp, Belgium
关键词: Confocal endomicroscopy;    Bioluminescence;    Homing;    BMSC;    Stem cell;   
Others  :  1134517
DOI  :  10.1186/1472-6750-12-93
 received in 2012-06-25, accepted in 2012-11-11,  发布年份 2012
PDF
【 摘 要 】

Background

Despite positive reports on the efficacy of stem cell therapy for the treatment of cardiovascular disease, the nature of stem cell homing to ischemic tissues remains elusive.

Results

We used a mouse model of peripheral tissue ischemia to study the survival and homing capacity of dual reporter gene (eGFP/Luciferase) expressing bone marrow-derived stromal cells (BMSC). Cell homing and survival were studied in the presence and absence of ciclosporin A (CsA) immunosuppression using bioluminescence imaging (BLI) together with confocal endomicroscopy. Different injection strategies were applied: central venous (CV), intra-arterial (IA) and intramuscular (IM). BLI and confocal endomicroscopy evidenced complete rejection of the IM injected allogeneic BMSC transplant within 5 to 10 days. Immunosuppression with CsA could only marginally prolong graft survival. IM injected BMSC did not migrate to the site of the arterial ligation. CV injection of BMSC resulted in massive pulmonary infarction, leading to respiratory failure and death. Intrapulmonary cell trapping was evidenced by confocal endomicroscopy, BLI and fluorescence microscopy. IA injection of BMSC proved to be a feasible and safe strategy to bypass the lung circulation. During the follow-up period, neither BLI nor confocal endomicroscopy revealed any convincing ischemia-directed homing of BMSC.

Conclusions

BLI and confocal endomicroscopy are complementary imaging techniques for studying the in vivo biology of dual reporter gene-expressing BMSC. Allogeneic BMSC survival is limited in an immunocompetent host and cannot be preserved by CsA immunosuppression alone. We did not find substantial evidence for ischemia-directed BMSC homing and caution against CV injection of BMSC, which can lead to massive pulmonary infarction.

【 授权许可】

   
2012 Everaert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306010526742.pdf 1544KB PDF download
Figure 6. 39KB Image download
Figure 5. 65KB Image download
Figure 4. 64KB Image download
Figure 3. 50KB Image download
Figure 2. 54KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ankrum J, Karp JM: Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol Med 2010, 16:203-209.
  • [2]Friedenstein AJ, Gorskaja JF, Kulagina NN: Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976, 4:267-274.
  • [3]Prockop DJ: Repair of tissues by adult stem/progenitor cells (MSC): controversies, myths, and changing paradigms. Mol Ther 2009, 17:939-946.
  • [4]Wu JC, Abraham MR, Kraitchman DL: Current perspectives on imaging cardiac stem cell therapy. J Nucl Med 2010, 51(Suppl 1):128S-136S.
  • [5]Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F: Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res 2009, 104:398-402.
  • [6]Barbash IM, Chouraqui P, Baron J, et al.: Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003, 108:863-868.
  • [7]Merx MW, Zernecke A, Liehn EA, et al.: Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Res Cardiol 2005, 100:208-216.
  • [8]Bergwerf I, De Vocht N, Tambuyzer B, et al.: Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice. BMC Biotechnol 2009, 9:1. BioMed Central Full Text
  • [9]Ronsyn MW, Daans J, Spaepen G, et al.: Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnol 2007, 7:90. BioMed Central Full Text
  • [10]Swijnenburg RJ, Schrepfer S, Govaert JA, et al.: Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 2008, 105:12991-12996.
  • [11]Swanger , Neuhuber B, Himes BT, Bakshi A, Fischer I: Analysis of allogeneic and syngeneic bone marrow stromal cell graft survival in the spinal cord. Cell Transplant 2005, 14:775-786.
  • [12]Zangi L, Margalit R, Reich-Zeliger S, et al.: Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 2009, 27:2865-2874.
  • [13]Liew A, O’Brien T: Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 2012, 3:28. BioMed Central Full Text
  • [14]Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI: The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001, 169:12-20.
  • [15]Daldrup-Link H, E Rudelius M, et al.: Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 2004, 31:1312-1321.
  • [16]Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP: Stem cell transplantation: the lung barrier. Transplant Proc 2007, 39:573-576.
  • [17]Amsalem Y, Mardor Y, Feinberg MS, et al.: Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 2007, 116:I38-I45.
  • [18]Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS: Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 2006, 47:1295-1301.
  • [19]Reekmans KP, Praet J, De Vocht N, et al.: Clinical potential of intravenous neural stem cell delivery for treatment of neuro-inflammatory disease in mice? Cell Transplant 2010, 20:851-869.
  • [20]Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS: Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009, 110:1189-1197.
  • [21]Pittenger MF, Martin BJ: Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004, 95:9-20.
  • [22]Song H, Song BW, Cha MJ, Choi IG, Hwang KC: Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 2010, 10:309-319.
  • [23]Liu H, Liu S, Li Y, et al.: The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 2012, 7:e34608.
  文献评价指标  
  下载次数:54次 浏览次数:57次