期刊论文详细信息
Annals of Occupational and Environmental Medicine
Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach
Wiebke Sickel1  Markus J Ankenbrand1  Gudrun Grimmer1  Andrea Holzschuh1  Stephan Härtel1  Jonathan Lanzen1  Ingolf Steffan-Dewenter1  Alexander Keller1 
[1] Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
关键词: Pollination ecology;    Palynology;    Osmia;    NGS;    Next generation sequencing;    ITS2;    Illumina MiSeq platform;    High throughput sequencing;    DNA barcoding;   
Others  :  1223785
DOI  :  10.1186/s12898-015-0051-y
 received in 2015-04-15, accepted in 2015-06-25,  发布年份 2015
PDF
【 摘 要 】

Background

Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing.

Results

We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000–3,000 high quality reads per sample were sufficient to assess the complete diversity of 95% of the samples. We were able to detect 650 different plant taxa in total, of which 95% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93% increase).

Conclusions

This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples.

【 授权许可】

   
2015 Sickel et al.

【 预 览 】
附件列表
Files Size Format View
20150905012638825.pdf 6661KB PDF download
Figure3. 40KB Image download
Figure2. 42KB Image download
Figure1. 85KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

【 参考文献 】
  • [1]Carvell C, Westrich P, Meek WR, Pywell RF, Nowakowski M. Assessing the value of annual and perennial forage mixtures for bumblebees by direct observation and pollen analysis. Apidologie. 2006; 37:326-340.
  • [2]Köppler K, Vorwohl G, Koeniger N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie. 2007; 38:341-353.
  • [3]Behl M, Horn H, Schwabe A. Analysis of pollen loads in a wild bee community (Hymenoptera: Apidae)—a method for elucidating habitat use and foraging distances. Apidologie. 2008; 39:456-467.
  • [4]Williams NM, Kremen C. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl. 2007; 17:910-921.
  • [5]Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One. 2012; 7:e29268.
  • [6]Mullins J, Emberlin J. Sampling pollens. J Aerosol Sci. 1997; 28:365-370.
  • [7]Keller A, Danner N, Grimmer G, Ankenbrand M, von der Ohe K, von der Ohe W. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 2015; 17:558-566.
  • [8]Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M et al.. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One. 2014; 9:e109363.
  • [9]Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, De Mattia F, Casiraghi M et al.. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 2015; 170:308-315.
  • [10]Parducci L, Suyama Y, Lascoux M, Bennett KD. Ancient DNA from pollen: a genetic record of population history in Scots pine. Mol Ecol. 2005; 14:2873-2882.
  • [11]Bennett KD, Parducci L. DNA from pollen: principles and potential. Holocene. 2006; 16:1031-1034.
  • [12]Wilson EE, Sidhu CS, LeVan KE, Holway DA. Pollen foraging behaviour of solitary Hawaiian bees revealed through molecular pollen analysis. Mol Ecol. 2010; 19:4823-4829.
  • [13]Richardson RT, Lin C-H, Sponsler DB, Quijia JO, Goodell K, Johnson RM. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci. 2015; 3:1400066.
  • [14]Kraaijeveld K, de Weger LA, Ventayol García M, Buermans H, Frank J, Hiemstra PS et al.. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol Ecol Resour. 2015; 15:8-16.
  • [15]Valentini A, Miquel C, Taberlet P. DNA barcoding for honey biodiversity. Diversity. 2010; 2:610-617.
  • [16]Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013; 79:5112-5120.
  • [17]Chen S, Yao H, Han J, Liu C, Song J, Shi L et al.. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010; 5:e8613.
  • [18]Gathmann A, Tscharntke T. Foraging ranges of solitary bees. J Anim Ecol. 2002; 71:757-764.
  • [19]Praz CJ, Müller A, Dorn S. Host recognition in a pollen-specialist bee: evidence for a genetic basis. Apidologie. 2008; 39:547-557.
  • [20]Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10:996-998.
  • [21]Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73:5261-5267.
  • [22]White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. Academic Press, New York; 1990: p.315-322.
  • [23]Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA. 2008; 105:17994-17999.
  • [24]Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al.. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7:335-336.
  • [25]Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26:2460-2461.
  • [26]R Core Team (2014) R: A language and environment for statistical computing. Vienna, Austria. http://www. R-project.org/ webcite
  • [27]McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013; 8:e61217.
  • [28]Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003; 14:927-930.
  • [29]Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene. 2009; 430:50-57.
  • [30]Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R et al.. The ITS2 Database III–sequences and structures for phylogeny. Nucleic Acids Res. 2010; 38(Database issue):D275-D279.
  • [31]Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J et al.. GenBank. Nucleic Acids Res. 2013; 41(Database issue):D36-D42.
  • [32]Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K et al.. Database resources of the national centre for biotechnology information. Nucleic Acids Res. 2011; 39(suppl 1):D38-D51.
  • [33]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-410.
  • [34]Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C et al.. Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool. 2009; 6:16. BioMed Central Full Text
  • [35]Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F et al.. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour. 2009; 9:51-60.
  • [36]Gugerli F, Parducci L, Petit RJ. Ancient plant DNA: review and prospects. New Phytol. 2004; 166:409-418.
  • [37]Behling H, Pillar VD, Orlóci L, Bauermann SG. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol. 2004; 203:277-297.
  • [38]Davies AL, Tipping R. Sensing small-scale human activity in the palaeoecological record: fine spatial resolution pollen analyses from Glen Affric, northern Scotland. Holocene. 2004; 14:233-245.
  • [39]Woolfe M, Primrose S. Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotechnol. 2004; 22:222-226.
  文献评价指标  
  下载次数:69次 浏览次数:18次