期刊论文详细信息
BMC Bioinformatics
Topological characterization of neuronal arbor morphology via sequence representation: II - global alignment
Todd A Gillette1  Parsa Hosseini1  Giorgio A Ascoli1 
[1] Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study (MS2A1), George Mason University, Fairfax, VA, USA
关键词: Tree topology;    Multiple sequence alignment;    Neuronal morphology;    Sequence alignment;   
Others  :  1231816
DOI  :  10.1186/s12859-015-0605-1
 received in 2015-03-02, accepted in 2015-04-30,  发布年份 2015
【 摘 要 】

Background

The increasing abundance of neuromorphological data provides both the opportunity and the challenge to compare massive numbers of neurons from a wide diversity of sources efficiently and effectively. We implemented a modified global alignment algorithm representing axonal and dendritic bifurcations as strings of characters. Sequence alignment quantifies neuronal similarity by identifying branch-level correspondences between trees.

Results

The space generated from pairwise similarities is capable of classifying neuronal arbor types as well as, or better than, traditional topological metrics. Unsupervised cluster analysis produces groups that significantly correspond with known cell classes for axons, dendrites, and pyramidal apical dendrites. Furthermore, the distinguishing consensus topology generated by multiple sequence alignment of a group of neurons reveals their shared branching blueprint. Interestingly, the axons of dendritic-targeting interneurons in the rodent cortex associates with pyramidal axons but apart from the (more topologically symmetric) axons of perisomatic-targeting interneurons.

Conclusions

Global pairwise and multiple sequence alignment of neurite topologies enables detailed comparison of neurites and identification of conserved topological features in alignment-defined clusters. The methods presented also provide a framework for incorporation of additional branch-level morphological features. Moreover, comparison of multiple alignment with motif analysis shows that the two techniques provide complementary information respectively revealing global and local features.

【 授权许可】

   
2015 Gillette et al.

附件列表
Files Size Format View
Figure 6. 97KB Image download
Figure 5. 166KB Image download
Figure 4. 110KB Image download
Figure 3. 131KB Image download
Figure 2. 104KB Image download
Figure 1. 122KB Image download
Figure 6. 97KB Image download
Figure 5. 166KB Image download
Figure 4. 110KB Image download
Figure 3. 131KB Image download
Figure 2. 104KB Image download
Figure 1. 122KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci. 2007; 27:9247-51.
  • [2]Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H, Yeh C-W et al.. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol. 2011; 21:1-11.
  • [3]Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, Dionne H et al.. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2012; 2:991-1001.
  • [4]Donohue DE, Ascoli GA. Automated reconstruction of neuronal morphology: an overview. Brain Res Rev. 2011; 67:94-102.
  • [5]Parekh R, Ascoli GA. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron. 2013; 77:1017-38.
  • [6]Teeter CM, Stevens CF. A general principle of neural arbor branch density. Curr Biol. 2011; 21:2105-8.
  • [7]Cuntz H, Mathy A, Häusser M. A scaling law derived from optimal dendritic wiring. Proc Natl Acad Sci U S A. 2012; 109:11014-8.
  • [8]Polavaram S, Gillette TA, Parekh R, Ascoli GA. Statistical analysis and data mining of digital reconstructions of dendritic morphologies. Front Neuroanat. 2014;8:138. doi: 10.3389/fnana.2014.00138.
  • [9]Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953; 87(Pt 4):387-406.1.
  • [10]Scorcioni R, Polavaram S, Ascoli GA. L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc. 2008; 3:866-76.
  • [11]Cardona A, Saalfeld S, Arganda I, Pereanu W, Schindelin J, Hartenstein V. Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts. J Neurosci. 2010; 30:7538-53.
  • [12]Costa M, Ostrovsky AD, Manton JD, Prohaska S, Jefferis GSXE. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases. bioRxiv. 2014. doi:10.1101/006346.
  • [13]Basu S, Condron B, Acton ST. Path2Path: Hierarchical path-based analysis for neuron matching. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE. 2011.996-9.
  • [14]Mottini A, Descombes X, Besse F. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework. Neuroinformatics. 2014;13:175–191. doi:10.1007/s12021-014-9255-0
  • [15]Wan Y, Long F, Qu L, Xiao H, Zhou Z, Hawrylycz M et al.. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies. 2015.
  • [16]Zhang K. A constrained edit distance between unordered labeled trees. Algorithmica. 1996; 15:205-22.
  • [17]Gillette T, Grefenstette J. On comparing neuronal morphologies with the constrained tree-edit-distance. Neuroinformatics. 2009; 7:191-4.
  • [18]Heumann H, Wittum G. The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics. 2009; 7:179-90.
  • [19]Gillette TA, Ascoli GA. Topological characterization of neuronal arbor morphology via sequence representation. I. Motif analysis. 2015.
  • [20]Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970; 48:443-53.
  • [21]Härdle W, Simar L. Applied multivariate statistical analysis. 2nd ed. Springer-Verlag, Berlin, Heidelberg; 2007.
  • [22]Bille P. A survey on tree edit distance and related problems. Theor Comput Sci. 2005; 337:217-39.
  • [23]Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth. Springer, New York; 2002.
  • [24]Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963; 58:236-44.
  • [25]Steinhaus H. Sur la division des corp materiels en parties. Bull l’Académie Pol Des Sci Cl 3. 1956; 1:801-4.
  • [26]Fraley C, Raftery AE. Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc. 2002; 97:611-31.
  • [27]Fraley C, Raftery AE, Murphy TB, Scrucca L. Mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation Technical Report No. 597. 2012.
  • [28]Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B. 1977; 39:1-38.
  • [29]Weihs C, Ligges U, Luebke K, Raabe N. klaR Analyzing German Business Cycles. In: Data Analysis and Decision Support. Baier D, Decker R, Schmidt-Thieme L, editors. Springer-Verlag, Berlin; 2005: p.335-43.
  • [30]Hubert L, Arabie P. Comparing partitions. J Classif. 1985; 2:193-218.
  • [31]Rand WM. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association. 1971;66:846–850.
  • [32]Brown KM, Gillette TA, Ascoli GA. Quantifying neuronal size: summing up trees and splitting the branch difference. Semin Cell Dev Biol. 2008; 19:485-93.
  • [33]Scorcioni R, Lazarewicz MT, Ascoli GA. Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. J Comp Neurol. 2004; 473:177-93.
  • [34]DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S et al.. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013; 14:202-16.
  • [35]Freund TF. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 2003; 26:489-95.
  • [36]Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007; 8:45-56.
  • [37]Cuntz H, Borst I, Segev I. Optimization principles of dendritic structure. Theor Biol Med Model. 2007; 4:21. BioMed Central Full Text
  • [38]Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006; 9:534-42.
  • [39]Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004; 8:418-25.
  • [40]Knoblauch A, Palm G. Pattern separation and synchronization in spiking associative memories and visual areas. Neural Netw. 2001; 14:763-80.
  • [41]Kawaguchi Y, Karube F, Kubota Y. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb Cortex. 2006; 16:696-711.
  • [42]Schmitz SK, Hjorth JJJ, Joemai RMS, Wijntjes R, Eijgenraam S, de Bruijn P et al.. Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J Neurosci Methods. 2011; 195:185-93.
  • [43]Deisseroth K, Schnitzer MJ. Engineering approaches to illuminating brain structure and dynamics. Neuron. 2013; 80:568-77.
  • [44]O’Rourke NA, Weiler NC, Micheva KD, Smith SJ. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci. 2012; 13:365-79.
  • [45]Armañanzas R, Ascoli GA. Towards the automatic classification of neurons. Trends Neurosci. 2015; 360:121-7.
  • [46]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [47]Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014; 12:59-60.
  • [48]Ruffalo M, LaFramboise T, Koyutürk M. Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics. 2011; 27:2790-6.
  • [49]Thompson JD, Linard B, Lecompte O, Poch O. A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One. 2011; 6:e18093.
  • [50]Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev Genet. 2013; 14:333-46.
  • [51]Ishizuka N, Cowan WM, Amaral DG. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol. 1995; 362:17-45.
  • [52]Michaelsen K, Murk K, Zagrebelsky M, Dreznjak A, Jockusch BM, Rothkegel M et al.. Fine-tuning of neuronal architecture requires two profilin isoforms. Proc Natl Acad Sci U S A. 2010; 107:15780-5.
  • [53]Megías M, Emri Z, Freund TF, Gulyás AI. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 2001; 102:527-40.
  • [54]Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex. 2010; 20:826-36.
  • [55]Anderson K, Bones B, Robinson B, Hass C, Lee H, Ford K et al.. The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. Cereb Cortex. 2009; 19:2131-44.
  • [56]Cameron WE, He F, Kalipatnapu P, Jodkowski JS, Guthrie RD. Morphometric analysis of phrenic motoneurons in the cat during postnatal development. J Comp Neurol. 1991; 314:763-76.
  • [57]Coombs J, van der List D, Wang G-Y, Chalupa LM. Morphological properties of mouse retinal ganglion cells. Neuroscience. 2006; 140:123-36.
  • [58]Kong J-H, Fish DR, Rockhill RL, Masland RH. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol. 2005; 489:293-310.
  • [59]Sulkowski MJ, Iyer SC, Kurosawa MS, Iyer EPR, Cox DN. Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila. PLoS One. 2011; 6:e22611.
  • [60]Cuntz H, Forstner F, Haag J, Borst A. The morphological identity of insect dendrites. PLoS Comput Biol. 2008; 4:e1000251.
  • [61]Kubota Y, Shigematsu N, Karube F, Sekigawa A, Kato S, Yamaguchi N et al.. Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex. 2011; 21:1803-17.
  • [62]Nikolenko V, Poskanzer KE, Yuste R. Two-photon photostimulation and imaging of neural circuits. Nat Methods. 2007; 4:943-50.
  • [63]Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex. 2002; 12:395-410.
  • [64]Jefferis GSXE, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR et al.. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell. 2007; 128:1187-203.
  • [65]Ikegaya Y, Le Bon-Jego M, Yuste R. Large-scale imaging of cortical network activity with calcium indicators. Neurosci Res. 2005; 52:132-8.
  文献评价指标  
  下载次数:86次 浏览次数:7次