期刊论文详细信息
Aquatic Biosystems
Molecular analysis of bacterial diversity in mudflats along the salinity gradient of an acidified tropical Bornean estuary (South East Asia)
Henk Bolhuis2  Henriette Schluepmann1  Juri Kristalijn2  Zohrah Sulaiman3  David J Marshall4 
[1] Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
[2] Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), P.O. Box 140, 4400AC Yerseke, The Netherlands
[3] Institut Teknologi Brunei, Tungku Link, Gadong BE1410, Brunei Darussalam
[4] Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei Darussalam
关键词: Microbial mats;    Bacterial diversity;    16S rRNA;    Acid sulfide;    Mudflats;    Brunei;    Borneo;    Marine Environmental Research;   
Others  :  1089032
DOI  :  10.1186/2046-9063-10-10
 received in 2014-06-20, accepted in 2014-10-19,  发布年份 2014
PDF
【 摘 要 】

Background

The Brunei River and Bay estuarine system (BES) in the northwest of Borneo is acidic and highly turbid. The system supports extensive intertidal mudflats and presents a potentially steep salinity and pH gradient along its length (45 km). Temporal variation in physical parameters is observed diurnally due to seawater flux during tidal forcing, and stochastically due to elevated freshwater inflow after rains, resulting in a salinity range between 0 and 34 psu. High velocity freshwater run-off from acid sulphate formations during monsoon seasons results in highly variable and acidic conditions (pH 4) at the upper reaches of the BES, whereas the pH is relatively stable (pH 8) at the seaward extremes, due to mixing with seawater from the South China Sea. At their surfaces, the BES mudflats present microbial ecosystems driven by oxygenic phototrophs. To study the effect of various physical parameters on the bacterial diversity of the BES mudflats, surface samples were collected from six sites stretching over 40 km for molecular and phylogentic analysis.

Results

The bacterial diversity at these sites was compared by community fingerprinting analysis using 16S rRNA gene based denaturing gradient gel electrophoresis and by 16S rRNA gene sequencing and phylogenetic analyses. Results revealed functionally conserved, diatom-driven microbial mudflat communities composed of mainly novel, uncultured species. Species composition was evaluated as 50-70% unique for each site along the BES. Clustering of the sequences commonly occurred and revealed that proteobacterial diversity was related to the salinity gradient. When considering all phyla, the diversity varied consistently with physical parameters (including anthropogenic) that are expected to influence microbial composition.

Conclusion

The BES mudflats were found to comprise the typical functional groups of microorganisms associated with photosynthetic carbon flux, sulfur cycling (Gamma- and Deltaproteobacteria), and decomposition (Bacteroidetes). From a structural perspective, however, the mudflats constituted discretely distributed communities along the physical gradient of the BES, composed of largely novel species of Bacteria. This study provides first insights into patterns of bacterial community structure in tropical South East Asian coastal ecosystems that are potentially threatened by increasing variability in pH and salinity, in line with predicted future environmental change.

【 授权许可】

   
2014 Bolhuis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150124010114260.pdf 1410KB PDF download
Figure 7. 37KB Image download
Figure 6. 58KB Image download
Figure 5. 97KB Image download
Figure 4. 77KB Image download
Figure 3. 74KB Image download
Figure 2. 98KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Underwood GJC, Kromkamp J: Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 1999, 29:93-153.
  • [2]de Winder B, Staats N, Stal LJ, Paterson DM: Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res 1999, 42:131-146.
  • [3]Paterson DM: Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol Oceanogr 1989, 34:223-234.
  • [4]Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C: Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 2013, 92:92-101.
  • [5]Jorgensen BB: Mineralization of organic-matter in the sea bed - the role of sulfate reduction. Nature 1982, 296:643-645.
  • [6]Leloup J, Quillet L, Berthe T, Petit F: Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 2006, 55:230-238.
  • [7]Visscher PT, Gritzer RF, Leadbetter ER: Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl Environ Microbiol 1999, 65:3272-3278.
  • [8]Cappenberg TE, Prins RA: Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. experiments with 14C-labeled substrates. Antonie Van Leeuwenhoek 1974, 40:457-469.
  • [9]Widdel F, Pfennig N: A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 1977, 112:119-122.
  • [10]Barton LL, Tomei FA: Characteristics and activities of sulfate-reducing bacteria. In Sulfate-Reducing Bacteria. 8th edition. Edited by Barton LL. New York, US: Springer; 1995:1-32. [Biotechnology Handbooks]
  • [11]Coulon F, Chronopoulou PM, Fahy A, Paisse S, Goni-Urriza M, Peperzak L, Acuna Alvarez L, McKew BA, Brussaard CP, Underwood GJ, Timmis KN, Duran R, McGenity TJ: Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 2012, 78:3638-3648.
  • [12]Leloup J, Petit F, Boust D, Deloffre J, Bally G, Clarisse O, Quillet L: Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the Seine estuary (France). Microb Ecol 2005, 50:307-314.
  • [13]Mayor DJ, Thornton B, Zuur AF: Resource quantity affects benthic microbial community structure and growth efficiency in a temperate intertidal mudflat. PLoS One 2012, 7:e38582.
  • [14]Roling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, Head IM: Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 2004, 70:2603-2613.
  • [15]Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NF: Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol 2013, 66:96-104.
  • [16]Lee J, Lee TK, Loffler FE, Park J: Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation 2011, 22:687-698.
  • [17]Dent DL, Pons LJ: A world perspective on acid sulphate soils. Geoderma 1995, 67:263-276.
  • [18]Grealish G, Fitzpatrick R: Acid sulphate soil characterization in Negara Brunei Darussalam: a case study to inform management decisions. Soil Use Manage 2013, 29:432-444.
  • [19]Grealish G, Fitzpatrick R, Ringrose-Voase A, Hicks W: Brunei: Summary of Acid Sulfate Soils. Perth, Australia; 2008.
  • [20]Brunei Shell Petroleum Company Sendrian Berhard, Brunei Museum /Brunei Darussalam: The geology and hydrocarbon resources of Negara Brunei Darussalam. 2nd edition. Edited by Sandal ST. Syabas; 1996. ISBN 9991790004, 9789991790008
  • [21]MacDonald DD, Carr RS, Eckenrod D, Greening H, Grabe S, Ingersoll CG, Janicki S, Janicki T, Lindskoog RA, Long ER, Pribble R, Sloane G, Smorong DE: Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida. Arch Environ Contam Toxicol 2004, 46:147-161.
  • [22]Bush RT, Sullivan LA, Fyfe D, Johnston S: Redistribution of monosulfidic black oozes by floodwaters in a coastal acid sulfate soil floodplain. Aust J Soil Res 2004, 42:603-607.
  • [23]Clark MW, McConchie D, Lewis DW, Saenger P: Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol 1998, 149:147-171.
  • [24]Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV: Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar Ecol Prog Ser 2003, 259:129-138.
  • [25]Marshall DJ, Santos JH, Leung KM, Chak WH: Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Mar Environ Res 2008, 66:422-429.
  • [26]Chua TE, Chou LM, Sadorra MSM (Eds): The Coastal Environmental Profile of Brunei Darussalam: Resource Assessment and Management Issues, Wokring Papers. Penang, Malaysia: The Worldfish Center; 1987.
  • [27]Howland RJ, Tappin AD, Uncles RJ, Plummer DH, Bloomer NJ: Distributions and seasonal variability of pH and alkalinity in the Tweed Estuary, UK. Sci Total Environ 2000, 251–252:125-138.
  • [28]Loreau M, de Mazancourt C: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 2013, 16(Suppl 1):106-115.
  • [29]Telesh I, Schubert H, Skarlato S: Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar Coast Shelf Sci 2013, 135:317-327.
  • [30]Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R: Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314:787-790.
  • [31]Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ: Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 2004, 305:362-366.
  • [32]Waldbusser GG, Salisbury JE: Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann Rev Mar Sci 2014, 6:221-247.
  • [33]Chao A: Non-parametric estimation of the number of classes in a population. Scand J Stat 1984, 11:265-270.
  • [34]Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR: Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 2013, 7:50-60.
  • [35]Bolhuis H, Fillinger L, Stal LJ: Coastal microbial mat diversity along a natural salinity gradient. PLoS One 2013, 8:e63166.
  • [36]Bolhuis H, Cretoiu MS, Stal LJ: Molecular ecology of microbial mats. FEMS Microbiol Ecol 2014. doi:10.1111/1574-6941.12408
  • [37]Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 2006, 103:12115-12120.
  • [38]Bolhuis H, Stal LJ: Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 2011, 5:1701-1712.
  • [39]Zhang W, Ki JS, Qian PY: Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci 2008, 76:668-681.
  • [40]Toes AC, Finke N, Kuenen JG, Muyzer G: Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments. Arch Environ Contam Toxicol 2008, 55:372-385.
  • [41]Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM: Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microb 2001, 67:4399-4406.
  • [42]Sahoo K, Dhal NK: Potential microbial diversity in mangrove ecosystems: a review. Indian J Mar Sci 2009, 38:249-256.
  • [43]Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW: Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 2012, 78:8264-8271.
  • [44]Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U: Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 1999, 187:77-87.
  • [45]Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnar DA, Vanura K, Wagner M, Horn M, Ott JA, Bright M: “Candidatus Thiobios zoothamnicoli,” an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 2006, 72:2014-2021.
  • [46]Neutzling O, Pfleiderer C, Trüper HG: Dissimilatory sulphur metabolism in phototrophic non-sulphur bacteria. J Gen Microbiol 1985, 131:791-798.
  • [47]Selig ER, Turner WR, Troeng S, Wallace BP, Halpern BS, Kaschner K, Lascelles BG, Carpenter KE, Mittermeier RA: Global priorities for marine biodiversity conservation. PLoS One 2014, 9:e82898.
  • [48]Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hal R, Ng PKL, Shih HT, Carvalho GR, von Rintelen T: Biogeography of the Indo-Australian Archipelago. Annu Rev Ecol Evol S 2011, 42:205-226.
  • [49]Sulaiman ZH, Mayden RL: Cypriniformes of borneo (Actinopterygii, otophysi): an extraordinary fauna for integrated studies on diversity, systematics, evolution, ecology, and conservation. Zootaxa 2012, 3586:359-376.
  • [50]Garbutt N, Prudente JC: Wild Borneo: The Wildlife and Scenery of Sabah, Sarawak, Brunei and Kalimantan. Cambridge, Mass: MIT Press; 2006:176.
  • [51]Wong KM, Chan CL: Mount Kinabalu: Borneo’s Magic Mountain: An Introduction to the Natural History of One of the World’s Great Natural Monuments. Kota Kinabalu: Natural History Publications; 1997.
  • [52]Rohde K: Latitudinal gradients in species-diversity - the search for the primary cause. Oikos 1992, 65:514-527.
  • [53]Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC: Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci 2011, 108:7850-7854.
  • [54]Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ: Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol Ecol 2014, 23:2260-2274.
  • [55]Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB: Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 2012, 10:497-506.
  • [56]de Bruyn M, Ruber L, Nylinder S, Stelbrink B, Lovejoy NR, Lavoue S, Tan HH, Nugroho E, Wowor D, Ng PK, Siti Azizah MN, Von Rintelen T, Hall R, Carvalho GR: Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. Syst Biol 2013, 62:398-410.
  • [57]Stein A, Gerstner K, Kreft H: Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 2014, 7:866-880.
  • [58]Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L: Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation. Genes Genet Syst 2013, 88:93-103.
  • [59]Raes N, Roos MC, Slik JWF, van Loon EE, ter Steege H: Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 2009, 32:180-192.
  • [60]Hossain MB, Marshall DJ, Venkatramanan S: Sediment granulometry and organic matter content in the intertidal zone of the Sungai Brunei estuarine system, northwest coast of Borneo. Carpath J Earth Env Sci 2014, 9:231-239.
  • [61]Edwards U, Rogall T, Blocker H, Emde M, Bottger EC: Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989, 17:7843-7853.
  • [62]Lane DJ: 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics. Edited by Stackebrandt E, Goodfellow M. Chichester, United Kingdom: John Wiley and Sons; 1991:115-175.
  • [63]Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H: Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 1996, 178:5636-5643.
  • [64]Piquet AM, Bolhuis H, Davidson AT, Thomson PG, Buma AG: Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiol Ecol 2008, 66:352-366.
  • [65]Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013, 41:D590-D596.
  • [66]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-7541.
  文献评价指标  
  下载次数:38次 浏览次数:19次