期刊论文详细信息
Biology of Sex Differences
Sex differences in stress-related receptors:
Debra A Bangasser1 
[1] Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, 19122, PA
关键词: Gender difference;    Anxiety disorder;    Depression;    Glucocorticoids;    Corticotropin releasing factor;   
Others  :  793327
DOI  :  10.1186/2042-6410-4-2
 received in 2012-11-20, accepted in 2012-12-27,  发布年份 2013
PDF
【 摘 要 】

Stress-related psychiatric disorders, such as unipolar depression and post-traumatic stress disorder (PTSD), occur more frequently in women than in men. Emerging research suggests that sex differences in receptors for the stress hormones, corticotropin releasing factor (CRF) and glucocorticoids, contribute to this disparity. For example, sex differences in CRF receptor binding in the amygdala of rats may predispose females to greater anxiety following stressful events. Additionally, sex differences in CRF receptor signaling and trafficking in the locus coeruleus arousal center combine to make females more sensitive to low levels of CRF, and less adaptable to high levels. These receptor differences in females could lead to hyperarousal, a dysregulated state associated with symptoms of depression and PTSD. Similar to the sex differences observed in CRF receptors, sex differences in glucocorticoid receptor (GR) function also appear to make females more susceptible to dysregulation after a stressful event. Following hypothalamic pituitary adrenal axis activation, GRs are critical to the negative feedback process that inhibits additional glucocorticoid release. Compared to males, female rats have fewer GRs and impaired GR translocation following chronic adolescent stress, effects linked to slower glucocorticoid negative feedback. Thus, under conditions of chronic stress, attenuated negative feedback in females would result in hypercortisolemia, an endocrine state thought to cause depression. Together, these studies suggest that sex differences in stress-related receptors shift females more easily into a dysregulated state of stress reactivity, linked to the development of mood and anxiety disorders. The implications of these receptor sex differences for the development of novel pharmacotherapies are also discussed.

【 授权许可】

   
2013 Bangasser; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705050351204.pdf 992KB PDF download
Figure 2. 91KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Kendler KS, Kessler RC, Walters EE, MacLean C, Neale MC, Heath AC, Eaves LJ: Stressful life events, genetic liability, and onset of an episode of major depression in women. Am J Psychiatry 1995, 152:833-842.
  • [2]Stein MB, Steckler T: Behavioral neurobiology of anxiety and its treatment. Preface. Curr Top Behav Neurosci 2010, 2:v-vii.
  • [3]Melchior M, Caspi A, Milne BJ, Danese A, Poulton R, Moffitt TE: Work stress precipitates depression and anxiety in young, working women and men. Psychol Med 2007, 37:1119-1129.
  • [4]Breslau N: The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma Violence Abuse 2009, 10:198-210.
  • [5]Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P: Trauma and posttraumatic stress disorder in the community: the 1996 detroit area survey of trauma. Arch Gen Psychiatry 1998, 55:626-632.
  • [6]Faravelli C: Life events preceding the onset of panic disorder. J Affect Disorders 1985, 9:103-105.
  • [7]Newman SC, Bland RC: Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample. Compr Psychiatry 1994, 35:76-82.
  • [8]Shabsigh R, Rowland D: The diagnostic and statistical manual of mental disorders, fourth edition, text revision as an appropriate diagnostic for premature ejaculation. J Sex Med 2007, 4:1468-1478.
  • [9]Gutman DA, Nemeroff CB: Neurobiology of early life stress: rodent studies. Semin Clin Neuropsychiatry 2002, 7:89-95.
  • [10]McCrory E, De Brito SA, Viding E: The link between child abuse and psychopathology: a review of neurobiological and genetic research. J R Soc Med 2012, 105:151-156.
  • [11]Bremne JD, Vermetten E: Stress and development: behavioral and biological consequences. Dev Psychopathol 2001, 13:473-489.
  • [12]Kessler RC: Epidemiology of women and depression. J Affect Disord 2003, 74:5-13.
  • [13]Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB: Sex and depression in the national comorbidity survey. I: lifetime prevalence, chronicity and recurrence. J Affect Disord 1993, 29:85-96.
  • [14]Tolin DF, Foa EB: Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychol Bull 2006, 132:959-992.
  • [15]Breslau N: Gender differences in trauma and posttraumatic stress disorder. J Gend Specif Med 2002, 5:34-40.
  • [16]Tolin DF, Foa EB: Gender and PTSD: A cognitive model. In In Gender and PTSD. Edited by Kimerling R, Ouimette P, Wolfe J. New York, NY US: Guilford Press; 2002:76-97.
  • [17]Hankin BL, Abramson LY: Development of gender differences in depression: an elaborated cognitive vulnerability-transactional stress theory. Psychol Bull 2001, 127:773-796.
  • [18]Cyranowski JM, Frank E, Young E, Shear MK: Adolescent onset of the gender difference in lifetime rates of major depression: A theoretical model. In Annual progress in child psychiatry and child development: 2000–2001. Edited by Hertzig ME, Farber EA. New York, NY US: Brunner-Routledge; 2003:383-398.
  • [19]Kendler KS, Kessler RC, Neale MC, Heath AC: The prediction of major depression in women: toward an integrated etiologic model. Am J Psychiatry 1993, 150:1139-1148.
  • [20]Mezulis AH, Funasaki KS, Charbonneau AM, Hyde JS: Gender differences in the cognitive vulnerability-stress model of depression in the transition to adolescence. Cogn Ther Res 2010, 34:501-513.
  • [21]McLaughlin K, Nolen-Hoeksema S: The role of rumination in promoting and preventing depression in adolescent girls. In In Depression in adolescent girls: Science and prevention. Edited by Strauman TJ, Costanzo PR, Garber J. New York, NY US: Guilford Press; 2011:112-129. Duke series in child development and public policy]
  • [22]Wichstrøm L: The emergence of gender difference in depressed mood during adolescence: the role of intensified gender socialization. Dev Psychol 1999, 35:232-245.
  • [23]Hyde JS, Mezulis AH, Abramson LY: The ABCs of depression: integrating affective, biological, and cognitive models to explain the emergence of the gender difference in depression. Psychol Rev 2008, 115:291-313.
  • [24]Breslau N, Chilcoat HD, Kessler RC, Peterson EL, Lucia VC: Vulnerability to assaultive violence: further specification of the sex difference in post-traumatic stress disorder. Psychol Med 1999, 29:813-821.
  • [25]Iteke O, Bakare MO, Agomoh AO, Uwakwe R, Onwukwe JU: Road traffic accidents and posttraumatic stress disorder in an orthopedic setting in south-eastern nigeria: a controlled study. Scand J Trauma Resusc Emerg Med 2011, 19:39. BioMed Central Full Text
  • [26]Vale W, Spiess J, Rivier C, Rivier J: Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981, 213:1394-1397.
  • [27]Dallman MF, Akana SF, Jacobson L, Levin N, Cascio CS, Shinsako J: Characterization of corticosterone feedback regulation of ACTH secretion. Ann N Y Acad Sci 1987, 512:402-414.
  • [28]Sapolsky RM, Meaney MJ, McEwen BS: The development of the glucocorticoid receptor system in the rat limbic brain. III. Negative-feedback regulation. Brain research 1985, 350:169-173.
  • [29]McEwen BS, Gianaros PJ: Stress- and allostasis-induced brain plasticity. Annu Rev Med 2011, 62:431-445.
  • [30]Merchenthaler I: Corticotropin releasing factor (CRF)-like immunoreactivity in the rat central nervous system. Extrahypothalamic distribution. Peptides 1984, 5(Suppl 1):53-69.
  • [31]Swanson LW, Sawchenko PE, Rivier J, Vale WW: Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 1983, 36:165-186.
  • [32]Cummings S, Elde R, Ells J, Lindall A: Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J Neurosci 1983, 3:1355-1368.
  • [33]Isogawa K, Bush DE, Ledoux JE: Contrasting effects of pretraining, posttraining, and pretesting infusions of corticotropin-releasing factor into the lateral amygdala: attenuation of fear memory formation but facilitation of its expression. Biol Psychiatry 2012. Epub ahead of print
  • [34]Gafford GM, Guo JD, Flandreau EI, Hazra R, Rainnie DG, Ressler KJ: Cell-type specific deletion of GABA(a)alpha1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc Natl Acad Sci USA 2012, 109:16330-16335.
  • [35]Regev L, Tsoory M, Gil S, Chen A: Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge. Biol Psychiatry 2012, 71:317-326.
  • [36]Pitts MW, Takahashi LK: The central amygdala nucleus via corticotropin-releasing factor is necessary for time-limited consolidation processing but not storage of contextual fear memory. Neurobiol Learn Mem 2011, 95:86-91.
  • [37]Bijlsma EY, van Leeuwen ML, Westphal KG, Olivier B, Groenink L: Local repeated corticotropin-releasing factor infusion exacerbates anxiety- and fear-related behavior: differential involvement of the basolateral amygdala and medial prefrontal cortex. Neuroscience 2011, 173:82-92.
  • [38]Jasnow AM, Davis M, Huhman KL: Involvement of central amygdalar and bed nucleus of the stria terminalis corticotropin-releasing factor in behavioral responses to social defeat. Behav Neurosci 2004, 118:1052-1061.
  • [39]Gray TS: Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann N Y Acad Sci 1993, 697:53-60.
  • [40]Rodaros D, Caruana DA, Amir S, Stewart J: Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area. Neuroscience 2007, 150:8-13.
  • [41]Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A: Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. J Physiol 2008, 586:2157-2170.
  • [42]Valentino RJ, Van Bockstaele E: Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008, 583:194-203.
  • [43]Valentino RJ, Commons KG: Peptides that fine-tune the serotonin system. Neuropeptides 2005, 39:1-8.
  • [44]Chang CP, Pearse RV 2nd, O′Connell S, Rosenfeld MG: Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 1993, 11:1187-1195.
  • [45]Chen R, Lewis KA, Perrin MH, Vale WW: Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci USA 1993, 90:8967-8971.
  • [46]Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB, Oltersdorf T: Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 1995, 92:836-840.
  • [47]Chalmers DT, Lovenberg TW, De Souza EB: Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995, 15:6340-6350.
  • [48]Primus RJ, Yevich E, Baltazar C, Gallager DW: Autoradiographic localization of CRF1 and CRF2 binding sites in adult rat brain. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 1997, 17:308-316.
  • [49]Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE: Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000, 428:191-212.
  • [50]Bale TL, Vale WW: CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004, 44:525-557.
  • [51]Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM: Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci 2009, 1179:120-143.
  • [52]Takahashi LK: Role of CRF(1) and CRF(2) receptors in fear and anxiety. Neurosci Biobehav Rev 2001, 25:627-636.
  • [53]Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT: Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 1997, 71:15-21.
  • [54]Contarino A, Dellu F, Koob GF, Smith GW, Lee KF, Vale W, Gold LH: Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res 1999, 835:1-9.
  • [55]Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, et al.: Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998, 20:1093-1102.
  • [56]Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W: Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 1998, 19:162-166.
  • [57]Holsboer F, Ising M: Central CRH system in depression and anxiety–evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008, 583:350-357.
  • [58]Coste SC, Murray SE, Stenzel-Poore MP: Animal models of CRH excess and CRH receptor deficiency display altered adaptations to stress. Peptides 2001, 22:733-741.
  • [59]Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF: Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000, 24:410-414.
  • [60]Muller MB, Holsboer F: Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry 2006, 59:1104-1115.
  • [61]Preil J, Muller MB, Gesing A, Reul JM, Sillaber I, van Gaalen MM, Landgrebe J, Holsboer F, Stenzel-Poore M, Wurst W: Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2. Endocrinology 2001, 142:4946-4955.
  • [62]Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF: Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 2003, 980:206-212.
  • [63]Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, et al.: Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 2000, 24:403-409.
  • [64]Zhao Y, Valdez GR, Fekete EM, Rivier JE, Vale WW, Rice KC, Weiss F, Zorrilla EP: Subtype-selective corticotropin-releasing factor receptor agonists exert contrasting, but not opposite, effects on anxiety-related behavior in rats. J Pharmacol Exp Ther 2007, 323:846-854.
  • [65]Henry B, Vale W, Markou A: The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J Neurosci 2006, 26:9142-9152.
  • [66]Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF: Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 2003, 23:1019-1025.
  • [67]Commons KG, Valentino RJ: Cellular basis for the effects of substance P in the periaqueductal gray and dorsal raphe nucleus. J Comp Neurol 2002, 447:82-97.
  • [68]Gold PW, Chrousos GP: Clinical studies with corticotropin releasing factor: implications for the diagnosis and pathophysiology of depression, Cushing′s disease, and adrenal insufficiency. Psychoneuroendocrinology 1985, 10:401-419.
  • [69]Gold PW, Chrousos GP: Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002, 7:254-275.
  • [70]Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM, Nemeroff CB, Charney DS: Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 1997, 154:624-629.
  • [71]Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W: Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984, 226:1342-1344.
  • [72]Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr: Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry 1999, 156:585-588.
  • [73]Sautter FJ, Bissette G, Wiley J, Manguno-Mire G, Schoenbachler B, Myers L, Johnson JE, Cerbone A, Malaspina D: Corticotropin-releasing factor in posttraumatic stress disorder (PTSD) with secondary psychotic symptoms, nonpsychotic PTSD, and healthy control subjects. Biol Psychiatry 2003, 54:1382-1388.
  • [74]Banki CM, Karmacsi L, Bissette G, Nemeroff CB: Cerebrospinal fluid neuropeptides in mood disorder and dementia. J Affect Disord 1992, 25:39-45.
  • [75]Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF: Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 1994, 60:436-444.
  • [76]Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF: Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 2008, 13:786-799. 741
  • [77]Austin MC, Janosky JE, Murphy HA: Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol Psychiatry 2003, 8:324-332.
  • [78]Bissette G, Klimek V, Pan J, Stockmeier C, Ordway G: Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology 2003, 28:1328-1335.
  • [79]Owens MJ, Bissette G, Nemeroff CB: Acute effects of alprazolam and adinazolam on the concentrations of corticotropin-releasing factor in the rat brain. Synapse 1989, 4:196-202.
  • [80]Owens MJ, Vargas MA, Knight DL, Nemeroff CB: The effects of alprazolam on corticotropin-releasing factor neurons in the rat brain: acute time course, chronic treatment and abrupt withdrawal. J Pharmacol Exp Ther 1991, 258:349-356.
  • [81]Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Nemeroff CB, Holsboer F: Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety 1998, 8:71-79.
  • [82]De Bellis MD, Gold PW, Geracioti TD Jr, Listwak SJ, Kling MA: Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am J Psychiatry 1993, 150:656-657.
  • [83]Nemeroff CB, Bissette G, Akil H, Fink M: Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin-releasing factor, beta-endorphin and Somatostatin. Br J Psychiatry 1991, 158:59-63.
  • [84]Keck ME, Kern N, Erhardt A, Unschuld PG, Ising M, Salyakina D, Muller MB, Knorr CC, Lieb R, Hohoff C, et al.: Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am J Med Genet B Neuropsychiatr Genet 2008, 147B:1196-1204.
  • [85]Amstadter AB, Nugent NR, Yang BZ, Miller A, Siburian R, Moorjani P, Haddad S, Basu A, Fagerness J, Saxe G, et al.: Corticotrophin-releasing hormone type 1 receptor gene (CRHR1) variants predict posttraumatic stress disorder onset and course in pediatric injury patients. Dis Markers 2011, 30:89-99.
  • [86]Wasserman D, Sokolowski M, Rozanov V, Wasserman J: The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress. Genes Brain Behav 2008, 7:14-19.
  • [87]Liu Z, Zhu F, Wang G, Xiao Z, Wang H, Tang J, Wang X, Qiu D, Liu W, Cao Z, Li W: Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett 2006, 404:358-362.
  • [88]Polanczyk G, Caspi A, Williams B, Price TS, Danese A, Sugden K, Uher R, Poulton R, Moffitt TE: Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry 2009, 66:978-985.
  • [89]Ishitobi Y, Nakayama S, Yamaguchi K, Kanehisa M, Higuma H, Maruyama Y, Ninomiya T, Okamoto S, Tanaka Y, Tsuru J, et al.: Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a japanese population. Am J Med Genet B Neuropsychiatr Genet 2012, 159B:429-436.
  • [90]Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F: Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000, 34:171-181.
  • [91]Iwasaki-Sekino A, Mano-Otagiri A, Ohata H, Yamauchi N, Shibasaki T: Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology 2009, 34:226-237.
  • [92]Sterrenburg L, Gaszner B, Boerrigter J, Santbergen L, Bramini M, Roubos EW, Peeters BW, Kozicz T: Sex-dependent and differential responses to acute restraint stress of corticotropin-releasing factor-producing neurons in the rat paraventricular nucleus, central amygdala, and bed nucleus of the stria terminalis. J Neurosci Res 2012, 90:179-192.
  • [93]Viau V, Bingham B, Davis J, Lee P, Wong M: Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 2005, 146:137-146.
  • [94]Duncko R, Kiss A, Skultetyova I, Rusnak M, Jezova D: Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology 2001, 26:77-89.
  • [95]Bale TL, Vale WW: Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J Neurosci 2003, 23:5295-5301.
  • [96]Weathington JM, Cooke BM: Corticotropin-releasing factor receptor binding in the amygdala changes across puberty in a Sex-specific manner. Endocrinology 2012, 153:5701-5705.
  • [97]Lim MM, Nair HP, Young LJ: Species and sex differences in brain distribution of corticotropin-releasing factor receptor subtypes 1 and 2 in monogamous and promiscuous vole species. J Comp Neurol 2005, 487:75-92.
  • [98]Sztainberg Y, Kuperman Y, Tsoory M, Lebow M, Chen A: The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Mol Psychiatry 2010, 15:905-917.
  • [99]Sandi C, Cordero MI, Ugolini A, Varea E, Caberlotto L, Large CH: Chronic stress-induced alterations in amygdala responsiveness and behavior–modulation by trait anxiety and corticotropin-releasing factor systems. Eur J Neurosci 2008, 28:1836-1848.
  • [100]Maejima Y, Aoyama M, Ookawara S, Hirao A, Sugita S: Distribution of the androgen receptor in the diencephalon and the pituitary gland in goats: Co-localisation with corticotrophin releasing hormone, arginine vasopressin and corticotrophs. Vet J 2009, 181:193-199.
  • [101]Shughrue PJ, Lane MV, Merchenthaler I: Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 1997, 388:507-525.
  • [102]Auger CJ, De Vries GJ: Progestin receptor immunoreactivity within steroid-responsive vasopressin-immunoreactive cells in the male and female rat brain. J Neuroendocrinol 2002, 14:561-567.
  • [103]Zuloaga DG, Yahn SL, Pang Y, Quihuis AM, Oyola MG, Reyna A, Thomas P, Handa RJ, Mani SK: Distribution and estrogen regulation of membrane progesterone receptor-beta in the female rat brain. Endocrinology 2012, 153:4432-4443.
  • [104]Simerly RB, Chang C, Muramatsu M, Swanson LW: Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 1990, 294:76-95.
  • [105]Weiser MJ, Goel N, Sandau US, Bale TL, Handa RJ: Androgen regulation of corticotropin-releasing hormone receptor 2 (CRHR2) mRNA expression and receptor binding in the rat brain. Exp Neurol 2008, 214:62-68.
  • [106]Karteris E, Markovic D, Chen J, Hillhouse EW, Grammatopoulos DK: Identification of a novel corticotropin-releasing hormone type 1beta-like receptor variant lacking exon 13 in human pregnant myometrium regulated by estradiol-17beta and progesterone. Endocrinology 2010, 151:4959-4968.
  • [107]Parham KL, Zervou S, Karteris E, Catalano RD, Old RW, Hillhouse EW: Promoter analysis of human corticotropin-releasing factor (CRF) type 1 receptor and regulation by CRF and urocortin. Endocrinology 2004, 145:3971-3983.
  • [108]Catalano RD, Kyriakou T, Chen J, Easton A, Hillhouse EW: Regulation of corticotropin-releasing hormone type 2 receptors by multiple promoters and alternative splicing: identification of multiple splice variants. Mol Endocrinol 2003, 17:395-410.
  • [109]Bangasser DA, Curtis A, Reyes BA, Bethea TT, Parastatidis I, Ischiropoulos H, Van Bockstaele EJ, Valentino RJ: Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 2010, 15(877):896-904.
  • [110]Valentino RJ, Bangasser D, Van Bockstaele E: Sex biased stress signaling. Mol Pharmacol 2012. Epub ahead of print
  • [111]Bangasser DA, Valentino RJ: Sex differences in molecular and cellular substrates of stress. Cell Mol Neurobiol 2012, 32:709-723.
  • [112]Hillhouse EW, Grammatopoulos DK: The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 2006, 27:260-286.
  • [113]Grammatopoulos DK, Randeva HS, Levine MA, Kanellopoulou KA, Hillhouse EW: Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple G-proteins. J Neurochem 2001, 76:509-519.
  • [114]Chen FM, Bilezikjian LM, Perrin MH, Rivier J, Vale W: Corticotropin releasing factor receptor-mediated stimulation of adenylate cyclase activity in the rat brain. Brain Res 1986, 381:49-57.
  • [115]Battaglia G, Webster EL, De Souza EB: Characterization of corticotropin-releasing factor receptor-mediated adenylate cyclase activity in the rat central nervous system. Synapse 1987, 1:572-581.
  • [116]Keil MF, Briassoulis G, Gokarn N, Nesterova M, Wu TJ, Stratakis CA: Anxiety phenotype in mice that overexpress protein kinase a. Psychoneuroendocrinology 2012, 37:836-843.
  • [117]Favilla C, Abel T, Kelly MP: Chronic galphas signaling in the striatum increases anxiety-related behaviors independent of developmental effects. J Neurosci 2008, 28:13952-13956.
  • [118]Page ME, Berridge CW, Foote SL, Valentino RJ: Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neurosci Lett 1993, 164:81-84.
  • [119]Snyder K, Wang WW, Han R, McFadden K, Valentino RJ: Corticotropin-releasing factor in the norepinephrine nucleus, locus coeruleus. Neuropsychopharmacology: Facilitates Behavioral Flexibility; 2011.
  • [120]Curtis AL, Lechner SM, Pavcovich LA, Valentino RJ: Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J Pharmacol Exp Ther 1997, 281:163-172.
  • [121]Curtis AL, Bethea T, Valentino RJ: Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 2006, 31:544-554.
  • [122]Jedema HP, Grace AA: Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci 2004, 24:9703-9713.
  • [123]Valentino RJ, Van Bockstaele E: Functional interactions between stress neuromediator and the locus coeruleur-noradrenaline system. In In Handbook of Stress and the Brain. Edited by Steckler TK N. The Netherlands: Elsevier; 2005:465-486.
  • [124]Hauger RL, Smith RD, Braun S, Dautzenberg FM, Catt KJ: Rapid agonist-induced phosphorylation of the human CRF receptor, type 1: a potential mechanism for homologous desensitization. Biochem Biophys Res Commun 2000, 268:572-576.
  • [125]Teli T, Markovic D, Levine MA, Hillhouse EW, Grammatopoulos DK: Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization. Mol Endocrinol 2005, 19:474-490.
  • [126]Reyes BA, Fox K, Valentino RJ, Van Bockstaele EJ: Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Eur J Neurosci 2006, 23:2991-2998.
  • [127]Reyes BA, Valentino RJ, Van Bockstaele EJ: Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 2008, 149:122-130.
  • [128]Holmes KD, Babwah AV, Dale LB, Poulter MO, Ferguson SS: Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases. J Neurochem 2006, 96:934-949.
  • [129]Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL: Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007, 293:R209-222.
  • [130]Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W: Development of Cushing′s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992, 130:3378-3386.
  • [131]Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW: Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 1994, 14:2579-2584.
  • [132]van Gaalen MM, Stenzel-Poore MP, Holsboer F, Steckler T: Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur J Neurosci 2002, 15:2007-2015.
  • [133]Bangasser DA, Reyes BA, Piel D, Garachh V, Zhang XY, Plona ZM, Van Bockstaele EJ, Beck SG, Valentino RJ: Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol Psychiatry 2012. Epub ahead of print
  • [134]O′Donnell T, Hegadoren KM, Coupland NC: Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology 2004, 50:273-283.
  • [135]Southwick SM, Bremner JD, Rasmusson A, Morgan CA 3rd, Arnsten A, Charney DS: Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry 1999, 46:1192-1204.
  • [136]Gold PW, Chrousos GP: The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences. Proc Assoc Am Physicians 1999, 111:22-34.
  • [137]Linton EA, Lowry PJ: Comparison of a specific two-site immunoradiometric assay with radioimmunoassay for rat/human CRF-41. Regul Pept 1986, 14:69-84.
  • [138]Orth DN, Mount CD: Specific high-affinity binding protein for human corticotropin-releasing hormone in normal human plasma. Biochem Biophys Res Commun 1987, 143:411-417.
  • [139]Westphal NJ, Seasholtz AF: CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Front Biosci 2006, 11:1878-1891.
  • [140]Potter E, Behan DP, Linton EA, Lowry PJ, Sawchenko PE, Vale WW: The central distribution of a corticotropin-releasing factor (CRF)-binding protein predicts multiple sites and modes of interaction with CRF. Proc Natl Acad Sci USA 1992, 89:4192-4196.
  • [141]Potter E, Behan DP, Fischer WH, Linton EA, Lowry PJ, Vale WW: Cloning and characterization of the cDNAs for human and rat corticotropin releasing factor-binding proteins. Nature 1991, 349:423-426.
  • [142]Herringa RJ, Nanda SA, Hsu DT, Roseboom PH, Kalin NH: The effects of acute stress on the regulation of central and basolateral amygdala CRF-binding protein gene expression. Brain Res Mol Brain Res 2004, 131:17-25.
  • [143]Lombardo KA, Herringa RJ, Balachandran JS, Hsu DT, Bakshi VP, Roseboom PH, Kalin NH: Effects of acute and repeated restraint stress on corticotropin-releasing hormone binding protein mRNA in rat amygdala and dorsal hippocampus. Neurosci Lett 2001, 302:81-84.
  • [144]Herringa RJ, Mackenrodt DB, Barlow JD, Roseboom PH, Nanda SA, Kalin NH: Corticotropin-releasing factor (CRF), but not corticosterone, increases basolateral amygdala CRF-binding protein. Brain Res 2006, 1083:21-28.
  • [145]Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A: Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 2003, 39:401-407.
  • [146]Speert DB, SJ MC, Seasholtz AF: Sexually dimorphic expression of corticotropin-releasing hormone-binding protein in the mouse pituitary. Endocrinology 2002, 143:4730-4741.
  • [147]Deuschle M, Schweiger U, Weber B, Gotthardt U, Korner A, Schmider J, Standhardt H, Lammers CH, Heuser I: Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J Clin Endocrinol Metab 1997, 82:234-238.
  • [148]Holsboer F: Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disorders 2001, 62:77-91.
  • [149]Barden N: Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J Psychiatry Neurosci 2004, 29:185-193.
  • [150]Board F, Persky H, Hamburg DA: Psychological stress and endocrine functions; blood levels of adrenocortical and thyroid hormones in acutely disturbed patients. Psychosom Med 1956, 18:324-333.
  • [151]Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM: Neurobiology of depression. Neuron 2002, 34:13-25.
  • [152]Strohle A, Holsboer F: Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 2003, 36(Suppl 3):S207-214.
  • [153]Pariante CM, Miller AH: Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001, 49:391-404.
  • [154]Sapolsky RM, Romero LM, Munck AU: How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000, 21:55-89.
  • [155]De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M: Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998, 19:269-301.
  • [156]Reul JM, de Kloet ER: Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985, 117:2505-2511.
  • [157]Veldhuis HD, Van Koppen C, Van Ittersum M, De Kloet ER: Specificity of the adrenal steroid receptor system in rat hippocampus. Endocrinology 1982, 110:2044-2051.
  • [158]Spencer RL, Young EA, Choo PH, McEwen BS: Adrenal steroid type I and type II receptor binding: estimates of in vivo receptor number, occupancy, and activation with varying level of steroid. Brain Res 1990, 514:37-48.
  • [159]De Kloet ER, Reul JM: Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 1987, 12:83-105.
  • [160]Tasker JG, Herman JP: Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress 2011, 14:398-406.
  • [161]Di S, Malcher-Lopes R, Halmos KC, Tasker JG: Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 2003, 23:4850-4857.
  • [162]Charron J, Drouin J: Glucocorticoid inhibition of transcription from episomal proopiomelanocortin gene promoter. Proc Natl Acad Sci USA 1986, 83:8903-8907.
  • [163]Newton R: Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000, 55:603-613.
  • [164]Jingami H, Matsukura S, Numa S, Imura H: Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/beta-lipotropin precursor mRNA in the pituitary in rats. Endocrinology 1985, 117:1314-1320.
  • [165]Kageyama K, Suda T: Regulatory mechanisms underlying corticotropin-releasing factor gene expression in the hypothalamus. Endocr J 2009, 56:335-344.
  • [166]Malkoski SP, Dorin RI: Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol 1999, 13:1629-1644.
  • [167]Pozzoli G, Bilezikjian LM, Perrin MH, Blount AL, Vale WW: Corticotropin-releasing factor (CRF) and glucocorticoids modulate the expression of type 1 CRF receptor messenger ribonucleic acid in rat anterior pituitary cell cultures. Endocrinology 1996, 137:65-71.
  • [168]Arana GW: Dexamethasone suppression test in the diagnosis of depression. JAMA 1991, 265:2253-2254.
  • [169]Arana GW, Baldessarini RJ, Ornsteen M: The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry 1985, 42:1193-1204.
  • [170]Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, James NM, Kronfol Z, Lohr N, Steiner M, et al.: A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch Gen Psychiatry 1981, 38:15-22.
  • [171]Holsboer F: The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000, 23:477-501.
  • [172]Reul JM, van den Bosch FR, de Kloet ER: Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 1987, 115:459-467.
  • [173]Watson S, Gallagher P, Smith MS, Ferrier IN, Young AH: The dex/CRH test–is it better than the DST? Psychoneuroendocrinology 2006, 31:889-894.
  • [174]Heuser I, Yassouridis A, Holsboer F: The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 1994, 28:341-356.
  • [175]Ising M, Kunzel HE, Binder EB, Nickel T, Modell S, Holsboer F: The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuropsychopharmacol Biol Psychiatry 2005, 29:1085-1093.
  • [176]Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB: The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999, 160:1-12.
  • [177]Pereira AM, Tiemensma J, Romijn JA: Neuropsychiatric disorders in Cushing′s syndrome. Neuroendocrinology 2010, 92(Suppl 1):65-70.
  • [178]Cohen SI: Cushing′s Syndrome: a psychiatric study of 29 patients. Br J Psychiatry 1980, 136:120-124.
  • [179]Kitay JI: Sex differences in adrenal cortical secretion in the rat. Endocrinology 1961, 68:818-824.
  • [180]Weinstock M, Razin M, Schorer-Apelbaum D, Men D, McCarty R: Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int J Dev Neurosci 1998, 16:289-295.
  • [181]Handa RJ, Burgess LH, Kerr JE, O′Keefe JA: Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994, 28:464-476.
  • [182]Rivier C: Gender, sex steroids, corticotropin-releasing factor, nitric oxide, and the HPA response to stress. Pharmacol Biochem Behav 1999, 64:739-751.
  • [183]Heinsbroek RP, Van Haaren F, Feenstra MG, Endert E, Van de Poll NE: Sex- and time-dependent changes in neurochemical and hormonal variables induced by predictable and unpredictable footshock. Physiol Behav 1991, 49:1251-1256.
  • [184]Seale JV, Wood SA, Atkinson HC, Harbuz MS, Lightman SL: Gonadal steroid replacement reverses gonadectomy-induced changes in the corticosterone pulse profile and stress-induced hypothalamic-pituitary-adrenal axis activity of male and female rats. J Neuroendocrinol 2004, 16:989-998.
  • [185]Weathington JM, Arnold AR, Cooke BM: Juvenile social subjugation induces a sex-specific pattern of anxiety and depression-like behaviors in adult rats. Horm Behav 2012, 61:91-99.
  • [186]Uhart M, Chong RY, Oswald L, Lin PI, Wand GS: Gender differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity. Psychoneuroendocrinology 2006, 31:642-652.
  • [187]Kirschbaum C, Kudielka BM, Gaab J, Schommer NC, Hellhammer DH: Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom Med 1999, 61:154-162.
  • [188]Kirschbaum C, Klauer T, Filipp SH, Hellhammer DH: Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosom Med 1995, 57:23-31.
  • [189]Seeman TE, Singer B, Wilkinson CW, McEwen B: Gender differences in age-related changes in HPA axis reactivity. Psychoneuroendocrinology 2001, 26:225-240.
  • [190]Kirschbaum C, Wust S, Hellhammer D: Consistent sex differences in cortisol responses to psychological stress. Psychosom Med 1992, 54:648-657.
  • [191]Kudielka BM, Kirschbaum C: Sex differences in HPA axis responses to stress: a review. Biol Psychol 2005, 69:113-132.
  • [192]Gallucci WT, Baum A, Laue L, Rabin DS, Chrousos GP, Gold PW, Kling MA: Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol 1993, 12:420-425.
  • [193]Heuser IJ, Gotthardt U, Schweiger U, Schmider J, Lammers CH, Dettling M, Holsboer F: Age-associated changes of pituitary-adrenocortical hormone regulation in humans: importance of gender. Neurobiol Aging 1994, 15:227-231.
  • [194]Friedmann B, Kindermann W: Energy metabolism and regulatory hormones in women and men during endurance exercise. Eur J Appl Physiol Occup Physiol 1989, 59:1-9.
  • [195]Collins A, Frankenhaeuser M: Stress responses in male and female engineering students. J Human Stress 1978, 4:43-48.
  • [196]Paris JJ, Franco C, Sodano R, Freidenberg B, Gordis E, Anderson DA, Forsyth JP, Wulfert E, Frye CA: Sex differences in salivary cortisol in response to acute stressors among healthy participants, in recreational or pathological gamblers, and in those with posttraumatic stress disorder. Horm Behav 2010, 57:35-45.
  • [197]Desbonnet L, Garrett L, Daly E, McDermott KW, Dinan TG: Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci 2008, 26:259-268.
  • [198]Viau V, Meaney MJ: Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 1991, 129:2503-2511.
  • [199]Burgess LH, Handa RJ: Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 1992, 131:1261-1269.
  • [200]Turner BB: Sex difference in glucocorticoid binding in rat pituitary is estrogen dependent. Life Sci 1990, 46:1399-1406.
  • [201]Turner BB, Weaver DA: Sexual dimorphism of glucocorticoid binding in rat brain. Brain Res 1985, 343:16-23.
  • [202]Krishnan AV, Swami S, Feldman D: Estradiol inhibits glucocorticoid receptor expression and induces glucocorticoid resistance in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 2001, 77:29-37.
  • [203]Burgess LH, Handa RJ: Estrogen-induced alterations in the regulation of mineralocorticoid and glucocorticoid receptor messenger RNA expression in the female rat anterior pituitary gland and brain. Mol Cell Neurosci 1993, 4:191-198.
  • [204]Bourke CH, Raees MQ, Malviya S, Bradburn CA, Binder EB, Neigh GN: Glucocorticoid sensitizers Bag1 and ppid are regulated by adolescent stress in a sex-dependent manner. Psychoneuroendocrinology 2012, 38:84-93.
  • [205]Grad I, Picard D: The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 2007, 275:2-12.
  • [206]Pratt WB, Morishima Y, Murphy M, Harrell M: Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol 2006, 172:111-138.
  • [207]Bourke CH, Harrell CS, Neigh GN: Stress-induced sex differences: adaptations mediated by the glucocorticoid receptor. Horm Behav 2012, 62:210-218.
  • [208]Binder EB: The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009, 34(Suppl 1):S186-195.
  • [209]Schmidt U, Wochnik GM, Rosenhagen MC, Young JC, Hartl FU, Holsboer F, Rein T: Essential role of the unusual DNA-binding motif of BAG-1 for inhibition of the glucocorticoid receptor. J Biol Chem 2003, 278:4926-4931.
  • [210]Kanelakis KC, Morishima Y, Dittmar KD, Galigniana MD, Takayama S, Reed JC, Pratt WB: Differential effects of the hsp70-binding protein BAG-1 on glucocorticoid receptor folding by the hsp90-based chaperone machinery. J Biol Chem 1999, 274:34134-34140.
  • [211]Uht RM, Anderson CM, Webb P, Kushner PJ: Transcriptional activities of estrogen and glucocorticoid receptors are functionally integrated at the AP-1 response element. Endocrinology 1997, 138:2900-2908.
  • [212]Kontula K, Paavonen T, Luukkainen T, Andersson LC: Binding of progestins to the glucocorticoid receptor. Correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochem Pharmacol 1983, 32:1511-1518.
  • [213]Weiser MJ, Handa RJ: Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus. Neuroscience 2009, 159:883-895.
  • [214]Million M, Grigoriadis DE, Sullivan S, Crowe PD, McRoberts JA, Zhou H, Saunders PR, Maillot C, Mayer EA, Tache Y: A novel water-soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress-induced visceral hyperalgesia and colonic motor function in rats. Brain Res 2003, 985:32-42.
  • [215]Nemeroff CB, Vale WW: The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 2005, 66(Suppl 7):5-13.
  • [216]Kehne JH: The CRF1 receptor, a novel target for the treatment of depression, anxiety, and stress-related disorders. CNS Neurol Disord Drug Targets 2007, 6:163-182.
  • [217]Beery AK, Zucker I: Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 2011, 35:565-572.
  • [218]Gaub M, Carlson CL: Gender differences in ADHD: a meta-analysis and critical review. J Am Acad Child Adolesc Psychiatry 1997, 36:1036-1045.
  • [219]Ramtekkar UP, Reiersen AM, Todorov AA, Todd RD: Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: implications for DSM-V and ICD-11. J Am Acad Child Adolesc Psychiatry 2010, 49:217-228. e211-213
  文献评价指标  
  下载次数:29次 浏览次数:16次