期刊论文详细信息
Biotechnology for Biofuels
Towards a deeper understanding of structural biomass recalcitrance using phase-contrast tomography
Augusta Isaac2  Vinicius Barboza6  Federico Ivan Sket5  José Roberto M D’Almeida1  Luciano Andrey Montoro4  André Hilger3  Ingo Manke3 
[1] Materials Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 225, Gávea, Rio de Janeiro, 22451-900, RJ, Brazil
[2] Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais - UFMG, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil
[3] Institute of Applied Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
[4] Department of Chemistry, Universidade Federal de Minas Gerais - UFMG, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil
[5] Instituto Madrileño de Estudios Avanzados - IMDEA, E.T.S. de Ingeniería de Caminos C/ Profesor Aranguren, Madrid, 28040, Spain
[6] Institute of Computing, Universidade Estadual de Campinas - UNICAMP, Avenida Albert Einstein, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, 13081-970, SP, Brazil
关键词: Synchrotron radiation;    Phase-contrast tomography;    Recalcitrance;    Surface area;    Biomass;   
Others  :  1145280
DOI  :  10.1186/s13068-015-0229-8
 received in 2014-11-11, accepted in 2015-02-20,  发布年份 2015
PDF
【 摘 要 】

Background

The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers).

Results

The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue.

Conclusions

We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.

【 授权许可】

   
2015 Isaac et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150401045658107.pdf 2780KB PDF download
Figure 5. 105KB Image download
Figure 4. 35KB Image download
Figure 3. 113KB Image download
Figure 2. 24KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-7.
  • [2]Zhang YHP, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose noncomplexed cellulase systems. Biotechnol Bioeng 2004, 88:797-824.
  • [3]Grethlein HE: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulose substrates. Bio Technol 1985, 3:155-60.
  • [4]Chang MM, Chou TYC, Tsao GT: Structure, pretreatment and hydrolysis of cellulose. Adv Biochem Eng 1981, 20:15-42.
  • [5]Arantes V, Saddler JN: Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechn Biofuels 2011, 4:3. BioMed Central Full Text
  • [6]Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC Jr, Warren RAJ, et al.: The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 1992, 267:6743-9.
  • [7]Weimer PJ, Lopez-Guisa JM, French AD: Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol 1990, 56:2419-21.
  • [8]Chandel AK, Antunes FAF, Anjos V, Bell MJV, Rodrigues LN, Polikarpov I, et al.: Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomycesshehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 2014, 7:63-80. BioMed Central Full Text
  • [9]Sant’anna C, Costa LT, Abud Y, Biancatto L, Miguens FC, de Souza W: Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy. Microsc Res Techniq 2013, 76:829-34.
  • [10]Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang C-P, et al.: Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging. Biotechnol Biofuels 2012, 109(2):399-404.
  • [11]Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 2011, 4:54-72. BioMed Central Full Text
  • [12]Himmel ME: Biomass conversion: methods and protocols. Humana Press: Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA; 2012.
  • [13]Marshall K, Sixsmith D: Some physical characteristics of microcrystalline cellulose 1. Powders for pharmaceutical use. Drug DevCommun 1974, 1:57-71.
  • [14]Isaac A, Sket F, Driemeier C, Rocha GJM: 3D imaging of sugarcane bagasse using X-ray microtomography. Ind Crop Prod 2013, 49:790-3.
  • [15]Momose A: Recent advances in X-ray phase imaging. Jpn J App Phy 2005, 44(9A):6355-67.
  • [16]Nascimento DCO, Ferreira AS, Monteiro SN, Aquino RCMP, Kestur SG: Studies on the characterization of piassava fibers and their epoxy composites. Compos Part A - Appl S 2012, 43:353-62.
  • [17]D’Almeida JRM, Aquino RCMP, Monteiro SN: Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos Part A-Appl S 2006, 37:1473-9.
  • [18]Chundawat SPS, Donohoe BS, da Costa SL, Elder T, Agarwal UP, Lu F, et al.: Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energ Environ Sci 2011, 4:973-84.
  • [19]Fratzl P, Weinkamer P: Nature’s hierarchical materials. Prog Mater Sci 2007, 52:1263-334.
  • [20]Isaac A, Sket F, Reimers W, Camin B, Sauthoff G, Pyzalla A: In situ 3D quantification of the evolution of creep cavity size, shape, and spatial orientation using synchrotron X-ray tomography. Mater Sci Eng A 2008, 478:108-18.
  • [21]Hildebrand T, Rüesgsegger P: A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 1996, 185:67-75.
  • [22]Saito T, Toriwaki J: New algorithms for Euclidean distance transformation on an n-dimensional digitized picture with applications. Pattern Recogn 1994, 27:1551-65.
  • [23]Wang W, Chen X, Donohoe BS, Ciesielski PN, Katahira R, Kuhn EM, et al.: Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover part 1: chemical and physical substrate analysis. Biotechnol Biofuels 2014, 7:57-69. BioMed Central Full Text
  • [24]Mooney CA, Mansfield SD, Rodger PB, Saddler JN: The effect of fiber characteristics on hydrolysis and cellulose accessibility to softwood substrates. Enzyme Microb Tech 1999, 25:644-50.
  • [25]Chang VS, Holtzapple MT: Fundamental factors affecting biomass enzymatic reactivity. App Bioch Biotech 2000, 84–86:5-37.
  • [26]Bothwell MK, Daughhetee SD, Chaua GY, Wilson DB, Walker LP: Binding capacity for Thermomonospora fusca E3, E4 and E5, the E3 binding domain, and Trichoderma reesei CBH1 on Avicel and bacterial microcrystalline cellulose. Biores Technol 1997, 60:169-78.
  • [27]Ciesielski PN, Wang W, Chen X, Vinzant TB, Tucker MP, Decker SR, et al.: Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover part 2: morphological and structural substrate analysis. Biotechnol Biofuels 2014, 7:47-58. BioMed Central Full Text
  • [28]Görner W, Hentschel MP, Müller BR, Riesemeier H, Krumrey M, Ulm G, et al.: BAMline: the first hard X-ray beamline at BESSYII. Nucl Instrum Meth A 2001, 467–468:703-6.
  • [29]Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc-Oxford 2002, 206:33-40.
  文献评价指标  
  下载次数:48次 浏览次数:46次