Biotechnology for Biofuels | |
Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × E. grandis leads to improved sugar release | |
Robert W. Sykes2  Erica L. Gjersing2  Kirk Foutz1  William H. Rottmann1  Sean A. Kuhn1  Cliff E. Foster4  Angela Ziebell2  Geoffrey B. Turner3  Stephen R. Decker3  Maud A. W. Hinchee1  Mark F. Davis2  | |
[1] ArborGen Inc., 2011 Broadbank Ct., Ridgeville 29472, SC, USA | |
[2] National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden 80401-3393, CO, USA | |
[3] Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden 80401-3393, CO, USA | |
[4] Great Lakes Bioenergy Research Center, Michigan State University, East Lansing 48824, MI, USA | |
关键词: Pretreatment; Lignin biosynthesis; Genetic modification; Recalcitrance; E. grandis; × Eucalyptus urophylla | |
Others : 1228152 DOI : 10.1186/s13068-015-0316-x |
|
received in 2015-04-21, accepted in 2015-08-13, 发布年份 2015 |
【 摘 要 】
Background
Lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance.
Results
Eucalyptus trees with down-regulated C4H or C3′H expression displayed lowered overall lignin content. The control samples had an average of 29.6 %, the C3′H reduced lines had an average of 21.7 %, and the C4H reduced lines had an average of 18.9 % lignin from wet chemical analysis. The C3′H and C4H down-regulated lines had different lignin compositions with average S/G/H ratios of 48.5/33.2/18.3 for the C3′H reduced lines and 59.0/39.8/1.2 for the C4H reduced lines, compared to the control with 65.9/33.2/1.0. Both the C4H and C3′H down-regulated lines had reduced recalcitrance as indicated by increased sugar release as determined using enzymatic conversion assays utilizing both no pretreatment and a hot water pretreatment.
Conclusions
Lowering lignin content rather than altering sinapyl alcohol/coniferyl alcohol/4-coumaryl alcohol ratios was found to have the largest impact on reducing recalcitrance of the transgenic eucalyptus variants. The development of lower recalcitrance trees opens up the possibility of using alternative pretreatment strategies in biomass conversion processes that can reduce processing costs.
【 授权许可】
2015 Sykes et al.
Files | Size | Format | View |
---|---|---|---|
Figure 5. | 32KB | Image | download |
Fig.1. | 12KB | Image | download |
Fig.2. | 13KB | Image | download |
Fig.1. | 12KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.1.
Figure 5.
【 参考文献 】
- [1]Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008, 99(13):5270-5295.
- [2]Himmel ME: Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell, Oxford; 2008.
- [3]Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 2007, 98(1):112-122.
- [4]Vega-Sanchez ME, Ronald PC: Genetic and biotechnological approaches for biofuel crop improvement. Curr Opin Biotechnol 2010, 21(2):218-224.
- [5]Simmons BA, Logue D, Ralph J: Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 2010, 13(3):313-320.
- [6]Wyman CE: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 2007, 25(4):153-157.
- [7]Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25(7):759-761.
- [8]Fu CX, Mielenz JR, Xiao XR, Ge YX, Hamilton CY, Rodriguez M, et al.: Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 2011, 108(9):3803-3808.
- [9]Cook C, Devoto A: Fuel from plant cell walls: recent developments in second generation bioethanol research. J Sci Food Agric 2011, 91(10):1729-1732.
- [10]Mansfield SD, Kang KY, Chapple C: Designed for deconstruction—poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 2012, 194(1):91-101.
- [11]Kaku T, Kaida R, Baba K, Hartati S, Sudarmonowati E, Hayashi T: Improvement of fermentable sugar yields of mangium through transgenic overexpression of xyloglucanase. J Wood Sci. 2011, 57(6):545-548.
- [12]Sjoestrom E: Wood chemistry: fundamentals and applications. 2nd edition. Academic Press, Oxford; 1993.
- [13]Wadenback J, Clapham D, Gellerstedt G, von Arnold S: Variation in content and composition of lignin in young wood of Norway spruce. Holzforschung 2004, 58(2):107-115.
- [14]Ralph J, Akiyama T, Coleman HD, Mansfield SD: Effects on lignin structure of coumarate 3-hydroxylase downregulation in poplar. Bioenergy Res 2012, 5(4):1009-1019.
- [15]Kumar R, Wyman CE: Features of controlling hydrolysis of cellulose in pretreated biomass. In Bioalcohol production. Edited by Waldron K. Woodhead, Cambridge; 2010:73-121.
- [16]Kien ND, Quang TH, Jansson G, Harwood C, Clapham D, von Arnold S: Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla. Ann For Sci 2009.
- [17]Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion JM, et al.: Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genet Genomes 2013, 9(4):927-942.
- [18]Kawaoka A, Nanto K, Ishii K, Ebinuma H: Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genet 2006, 55(6):269-277.
- [19]Bjurhager I, Olsson AM, Zhang B, Gerber L, Kumar M, Berglund LA, et al.: Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 2010, 11(9):2359-2365.
- [20]Bonawitz ND, Chapple C: The genetics of lignin biosynthesis: connecting genotype to phenotype. In Annual review of genetics. Edited by Campbell A, Lichten M, Schupbach G. Annual Reviews, Palo Alto; 2010:337-363.
- [21]Sattler SE, Palmer NA, Saballos A, Greene AM, Xin ZG, Sarath G, et al.: Identification and characterization of four missense mutations in brown midrib 12 (Bmr12), the caffeic O-methyltranferase (COMT) of sorghum. Bioenergy Res 2012, 5(4):855-865.
- [22]Yee KL, Rodriguez M, Tschaplinski TJ, Engle NL, Martin MZ, Fu CX, et al.: Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol Biofuels 2012.
- [23]O’Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, et al.: Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 2002, 11(5):495-503.
- [24]Baucher M, Halpin C, Petit-Conil M, Boerjan W: Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 2003, 38(4):305-350.
- [25]Ralph J, Akiyama T, Kim H, Lu FC, Schatz PF, Marita JM, et al.: Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 2006, 281(13):8843-8853.
- [26]Ziebell A, Gracom K, Katahira R, Chen F, Pu YQ, Ragauskas A, et al.: Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 2010, 285(50):38961-38968.
- [27]Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA: Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 2005, 102(46):16573-16578.
- [28]Blee K, Choi JW, O’Connell AP, Jupe SC, Schuch W, Lewis NG, et al.: Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry 2001, 57(7):1159-1166.
- [29]Carocha V, Soler M, Hefer CA, Cassan-Wang H, Fevereiro P, Myburg AA, et al.: Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 2015, 206(4):1-17.
- [30]Decker S, Carlile M, Selig M, Doeppke C, Davis M, Sykes R et al (2012) Reducing the effect of variable starch levels in biomass recalcitrance screening. In: Himmel ME (ed) Biomass conversion. Methods in molecular biology. Humana Press, New York, pp 181–95. doi:10.1007/978-1-61779-956-3_17
- [31]Pu YQ, Chen F, Ziebell A, Davison BH, Ragauskas AJ: NMR characterization of C3H and HCT down-regulated alfalfa lignin. Bioenergy Res 2009, 2(4):198-208.
- [32]Selig M, Tucker M, Sykes R, Reichel K, Brunecky R, Himmel M, et al.: Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol 2010, 6:104-111.
- [33]Decker SR, Brunecky R, Tucker MP, Himmel ME, Selig MJ: High-throughput screening techniques for biomass conversion. Bioenergy Res 2009, 2(4):179-192.
- [34]Bonawitz ND, Chapple C: Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 2013, 24(2):336-343.
- [35]Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, et al.: Engineering secondary cell wall deposition in plants. Plant Biotechnol J 2013, 11(3):325-335.
- [36]Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, et al.: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 2011, 108(15):6300-6305.
- [37]Forster R, Rottmann W, Connett M, Sanders P, Zhang G, Fitzgerald S et al (2008) DNA construct comprising a promoter linked to gene involved in monolignol biosynthetic pathway. United States
- [38]Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al.: The genome of Eucalyptus grandis. Nature 2014, 510(7505):356-362.
- [39]JGI. Phytozome 10.1 (2012) The JGI comparative plant genomics portal. http://phytozome.jgi.doe.gov/pz/eucalyptus. Accessed 3 Oct 2012
- [40]Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, et al.: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012, 40(D1):D1178-D1186.
- [41]Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, et al.: An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Transgenic Res 2003, 12(4):403-411.
- [42]Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al.: Primer3—new capabilities and interfaces. Nucleic Acids Res 2012, 40(15):e115.
- [43]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D et al (2012) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedures 2012. http://www.nrel.gov/docs/gen/fy13/42618.pdf Accessed 14 Sept 2012
- [44]Sykes R, Yung M, Novaes E, Kirst M, Peter G, Davis M (2009) High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. In: Mielenz J (ed) Biofuels: methods and protocols, methods in molecular biology. Humana Press, New York, pp 169–183. doi:10.1007/978-1-60761-214-8_12
- [45]Evans RJ, Milne TA: Molecular characterization of the pyrolysis of biomass. Fund Energy Fuels 1987, 1(2):123-137.
- [46]Tuskan G, West D, Bradshaw HD, Neale D, Sewell M, Wheeler N, et al.: Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Appl Biochem Biotechnol 1999, 77–9:55-65.
- [47]Foster C, Martin T, Pauly M: Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 2010, 37:e1745.