BMC Bioinformatics | |
Scan for Motifs: a webserver for the analysis of post-transcriptional regulatory elements in the 3′ untranslated regions (3′ UTRs) of mRNAs | |
Ambarish Biswas1  Chris M Brown2  | |
[1] Department of Biochemistry, Genetics Otago, University of Otago, Dunedin, New Zealand | |
[2] Genetics Otago, University of Otago, Dunedin, New Zealand | |
关键词: Translational control; RNA binding protein; microRNA; Untranslated region; | |
Others : 818464 DOI : 10.1186/1471-2105-15-174 |
|
received in 2014-02-10, accepted in 2014-05-16, 发布年份 2014 | |
【 摘 要 】
Background
Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3′UTRs.
Results
Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3′UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases.
Conclusions
Visualisation of the binding sites of different classes of effectors that bind to 3′UTRs will facilitate the study of regulatory elements in 3′ UTRs.
【 授权许可】
2014 Biswas and Brown; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140711103141571.pdf | 1530KB | download | |
Figure 3. | 120KB | Image | download |
Figure 2. | 92KB | Image | download |
Figure 1. | 69KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Jacobs GH, Chen A, Stevens SG, Stockwell PA, Black MA, Tate WP, Brown CM: Transterm: a database to aid the analysis of regulatory sequences in mRNAs. Nucleic Acids Res 2009, 37(Database issue):D72-D76.
- [2]Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD: An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinforma 2013, 14(Suppl 2):S4.
- [3]Szostak E, Gebauer F: Translational control by 3′-UTR-binding proteins. Brief Funct Genomics 2013, 12(1):58-65.
- [4]Michalova E, Vojtesek B, Hrstka R: Impaired pre-mRNA processing and altered architecture of 3′ untranslated regions contribute to the development of human disorders. Int J Mol Sci 2013, 14(8):15681-15694.
- [5]Stevens S, Brown C: In silico estimation of translation efficiency in human cell lines: potential evidence for widespread translational control. PLoS One 2013, 8(2):e57625.
- [6]Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL: AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 2011, 39(Database issue):D66-D69.
- [7]Stevens S, Brown C: Bioinformatic methods to discover cis-regulatory elements in mRNAs. In Springer Handbook of Bio-/Neuro-informatics. Edited by Kasabov N. Heidelberg: Springer; 2014:151-169.
- [8]Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-1146.
- [9]Dweep H, Sticht C, Gretz N: In-silico algorithms for the screening of possible microRNA binding sites and their interactions. Curr Genomics 2013, 14(2):127-136.
- [10]Naifang S, Minping Q, Minghua D: Integrative approaches for microRNA target prediction: combining sequence information and the paired mRNA and miRNA expression profiles. Curr Bioinform 2013, 8(1):37-45.
- [11]Incarnato D, Neri F, Diamanti D, Oliviero S: MREdictor: a two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets. Nucleic Acids Res 2013, 41(18):8421-8433.
- [12]Ciafre SA, Galardi S: microRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol 2013, 10(6):935-942.
- [13]Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318(5858):1931-1934.
- [14]Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM: Functional complexity and regulation through RNA dynamics. Nature 2012, 482(7385):322-330.
- [15]Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R: A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 2010, 12(10):1014-1020.
- [16]Wu X, Chesoni S, Rondeau G, Tempesta C, Patel R, Charles S, Daginawala N, Zucconi BE, Kishor A, Xu G, Shi Y, Li ML, Irizarry-Barreto P, Welsh J, Wilson GM, Brewer G: Combinatorial mRNA binding by AUF1 and Argonaute 2 controls decay of selected target mRNAs. Nucleic Acids Res 2013, 41(4):2644-2658.
- [17]Jiang P, Singh M, Coller HA: Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in transcript decay. PLoS Comput Biol 2013, 9(5):e1003075.
- [18]Zhang C, Lee KY, Swanson MS, Darnell RB: Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res 2013, 41(14):6793-6807.
- [19]Bryan K, Terrile M, Bray IM, Domingo-Fernandez R, Watters KM, Koster J, Versteeg R, Stallings RL: Discovery and visualization of miRNA-mRNA functional modules within integrated data using bicluster analysis. Nucleic Acids Res 2014, 42(3):e17.
- [20]Dassi E, Malossini A, Re A, Mazza T, Tebaldi T, Caputi L, Quattrone A: AURA: atlas of UTR regulatory activity. Bioinformatics 2012, 28(1):142-144.
- [21]Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S, Gennarino VA, Horner DS, Pavesi G, Picardi E, Pesole G: UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 2010, 38(Database issue):D75-D80.
- [22]Grillo G, Licciulli F, Liuni S, Sbisa E, Pesole G: PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res 2003, 31(13):3608-3612.
- [23]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39(Database issue):D152-D157.
- [24]Claeys M, Storms V, Sun H, Michoel T, Marchal K: MotifSuite: workflow for probabilistic motif detection and assessment. Bioinformatics 2012, 28(14):1931-1932.
- [25]Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR: RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 2011, 39(Database issue):D301-D308.
- [26]Giambelluca M, Rollet-Labelle E, Bertheau-Mailhot G, Laflamme C: Post-transcriptional regulation of tumour necrosis factor alpha biosynthesis: Relevance to the pathophysiology of rheumatoid arthritis. OA Inflammation 2013, 1(1):3.
- [27]Shi JX, Su X, Xu J, Zhang WY, Shi Y: HuR post-transcriptionally regulates TNF-alpha-induced IL-6 expression in human pulmonary microvascular endothelial cells mainly via tristetraprolin. Respir Physiol Neurobiol 2012, 181(2):154-161.
- [28]Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J: Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005, 120(5):623-634.
- [29]Liu M, Wang Z, Yang S, Zhang W, He S, Hu C, Zhu H, Quan L, Bai J, Xu N: TNF-alpha is a novel target of miR-19a. Int J Oncol 2011, 38(4):1013-1022.
- [30]Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007, 179(8):5082-5089.
- [31]Bak RO, Mikkelsen JG: Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci 2010, 17:53. BioMed Central Full Text
- [32]Li H, Chen X, Guan L, Qi Q, Shu G, Jiang Q, Yuan L, Xi Q, Zhang Y: MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-alpha (TNF-alpha) in the porcine model. PLoS One 2013, 8(10):e71568.
- [33]Qi MY, Wang ZZ, Zhang Z, Shao Q, Zeng A, Li XQ, Li WQ, Wang C, Tian FJ, Li Q, Zou J, Qin YW, Brewer G, Huang S, Jing Q: AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol Cell Biol 2012, 32(5):913-928.
- [34]Halees AS, El-Badrawi R, Khabar KS: ARED Organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Res 2008, 36(Database issue):D137-D140.
- [35]Hel Z, Di Marco S, Radzioch D: Characterization of the RNA binding proteins forming complexes with a novel putative regulatory region in the 3′-UTR of TNF-alpha mRNA. Nucleic Acids Res 1998, 26(11):2803-2812.
- [36]Thiele BJ, Berger M, Huth A, Reimann I, Schwarz K, Thiele H: Tissue-specific translational regulation of alternative rabbit 15-lipoxygenase mRNAs differing in their 3′-untranslated regions. Nucleic Acids Res 1999, 27(8):1828-1836.