期刊论文详细信息
Behavioral and Brain Functions
GPA-14, a Gαi subunit mediates dopaminergic behavioral plasticity in C. elegans
Mahlet Mersha2  Rosaria Formisano2  Rochelle McDonald2  Pratima Pandey2  Nektarios Tavernarakis1  Singh Harbinder2 
[1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Medical School, University of Crete, Heraklion, Crete 70013, Greece
[2] Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
关键词: ;    G-protein;    Dopamine receptor;    Dopamine;    dop-2;    gpa-14;    Memory;    Habituation;    Learning;    C. elegans;   
Others  :  793528
DOI  :  10.1186/1744-9081-9-16
 received in 2012-06-13, accepted in 2013-04-12,  发布年份 2013
PDF
【 摘 要 】

Background

Precise levels of specific neurotransmitters are required for appropriate neuronal functioning. The neurotransmitter dopamine is implicated in modulating behaviors, such as cognition, reward and memory. In the nematode Caenorhabditis elegans, the release of dopamine during behavioral plasticity is in part modulated through an acid-sensing ion channel expressed in its eight dopaminergic neurons. A D2-like C. elegans dopamine receptor DOP-2 co-expresses along with a Gαi subunit (GPA-14) in the anterior deirid (ADE) pair of dopaminergic neurons.

Findings

In follow-up experiments to our recently reported in vitro physical interaction between DOP-2 and GPA-14, we have behaviorally characterized worms carrying deletion mutations in gpa-14 and/or dop-2. We found both mutants to display behavioral abnormalities in habituation as well as associative learning, and exogenous supply of dopamine was able to revert the observed behavioral deficits. The behavioral phenotypes of dop-2 and gpa-14 loss-of-function mutants were found to be remarkably similar, and we did not observe any cumulative defects in their double mutants.

Conclusion

Our results provide genetic and phenotypic support to our earlier in vitro results where we had shown that the DOP-2 dopamine receptor and the GPA-14 Gαi subunit physically interact with each other. Results from behavioral experiments presented here together with our previous in-vitro work suggests that the DOP-2 functions as a dopamine auto-receptor to modulate two types of learning, anterior touch habituation and chemosensory associative conditioning, through a G-protein complex that comprises GPA-14 as its Gα subunit.

【 授权许可】

   
2013 Mersha et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705052555546.pdf 1041KB PDF download
Figure 3. 62KB Image download
Figure 2. 33KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kandel ER: The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 2001, 21(5):565-611.
  • [2]Sawin ER, Ranganathan R, Horvitz HR: C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26:619-631.
  • [3]Khan ZU, Muly EC: Molecular mechanisms of working memory. Behav Brain Res 2011, 219(2):329-341.
  • [4]Wei-Dong Y, Spealman RD, Zhang J: Dopaminergic signaling in dendritic spines. Biochem Pharmacol 2009, 75(11):2055-2069.
  • [5]Beaulieu JM, Gainetdinov RR: The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011, 63:182-217.
  • [6]Williams JM, Galli A: The dopamine transporter: a vigilant border control for psychostimulant action. Handb Exp Pharmacol 2006, 175:215-232.
  • [7]Pidoplichko VI, Dani JA: Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci USA 2006, 103(30):11376-11380.
  • [8]Voglis G, Tavernarakis N: A synaptic DEGENaC ion channel mediates learning in C. elegans by facilitating dopamine signaling. EMBO J 2008, 27:3288-3299.
  • [9]L’hirondel M, Cheramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J: Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res 1998, 792:253-262.
  • [10]Nuttley W, Harbinder S, van der Kooy D: Genetic dissection and kinetics of opposing attractive and aversive components triggered in response to benzaldehyde in C. elegans. Learn Mem 2001, 8(3):170-181.
  • [11]Saeki S, Yamamoto M, Iino Y: Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 2001, 204(10):1757-1764.
  • [12]Ardiel EL, Rankin CH: An elegant mind: Learning and memory in Caenorhabditis elegans. Learn Memory 2010, 17:191-201.
  • [13]White JG, Southgate E, Thomson JN, Brenner S: The structure of the nervous system in the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986, 314:1-340.
  • [14]Suo S, Sasagawa N, Ishiura S: Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem 2003, 86:869-878.
  • [15]Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hébert TW, van der Kooy D, Schafer WR, Culotti JG, Van Tol HH: Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 2004, 23:473-482.
  • [16]Kindt KS, Quast KB, Giles AC, De S, Hendrey D, Nicastro I, Rankin CH, Schafer WR: Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron 2007, 55(4):662-676.
  • [17]Ezak MJ, Ferkey DM: The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One 2010, 5(3):e9487.
  • [18]Ezcurra M, Tanizawa Y, Swaboda P, Schafer WR: Food sensitizes C. elegans avoidance behaviours through acute dopamine signaling. EMBO J 2011, 30(6):1110-1122.
  • [19]Bastiani C, Mendel J: Heterotrimeric G proteins in C. elegans. WormBook, ed. The C. elegans Research Community. WormBook 2006. http://www.wormbook.org webcite
  • [20]Jansen G, Thijssen KL, Werner P, Van der Horst M, Hazendonk E, Plasterk RH: The complete family of genes encoding G-proteins of Caenorhabditis elegans. Nat Genet 1999, 21:414-419.
  • [21]Pandey P, Harbinder S: The Caenorhabditis elegans D2-like dopamine receptor DOP-2 physically interacts with GPA-14, a Gαi subunit. J Mol Signal 2012, 7(1):3. BioMed Central Full Text
  • [22]Rose JK, Rankin CH: Analysis of Habituation in Caenorhabditis elegans. Learn Mem 2001, 8:63-69.
  • [23]Giles AC, Rankin CH: Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 2009, 92(2):139-146.
  • [24]Bargmann CI, Horvitz HR: Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in Caenorhabditis elegans. Neuron 1991, 7(5):729-742.
  • [25]Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M: Genetically determined differences in learning from errors. Science 2007, 2007(318):1642-1645.
  • [26]Jocham G, Klein TA, Neumann J, Cramon DY, Reuter M, Ullsperger M: Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci 2009, 29(12):3695-3704.
  • [27]Jomphe C, Tiberi M, Trudeau LE: Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacol 2006, 50(5):595-605.
  文献评价指标  
  下载次数:51次 浏览次数:45次