期刊论文详细信息
BMC Bioinformatics
Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
Andrei Kramer1  Ben Calderhead2  Nicole Radde1 
[1] Institute for Systems Theory and Automatic Control, Pfaffenwaldring 9, 70550 Stuttgart, Germany
[2] Department of Mathematics, Imperial College London, London SW7 2AZ, UK
关键词: Systems biology;    Steady state data;    Hybrid monte carlo;    Parameter estimation;    MCMC methods;   
Others  :  1087539
DOI  :  10.1186/1471-2105-15-253
 received in 2014-01-15, accepted in 2014-07-07,  发布年份 2014
PDF
【 摘 要 】

Background

Parameter estimation for differential equation models of intracellular processes is a highly relevant bu challenging task. The available experimental data do not usually contain enough information to identify all parameters uniquely, resulting in ill-posed estimation problems with often highly correlated parameters. Sampling-based Bayesian statistical approaches are appropriate for tackling this problem. The samples are typically generated via Markov chain Monte Carlo, however such methods are computationally expensive and their convergence may be slow, especially if there are strong correlations between parameters. Monte Carlo methods based on Euclidean or Riemannian Hamiltonian dynamics have been shown to outperform other samplers by making proposal moves that take the local sensitivities of the system’s states into account and accepting these moves with high probability. However, the high computational cost involved with calculating the Hamiltonian trajectories prevents their widespread use for all but the smallest differential equation models. The further development of efficient sampling algorithms is therefore an important step towards improving the statistical analysis of predictive models of intracellular processes.

Results

We show how state of the art Hamiltonian Monte Carlo methods may be significantly improved for steady state dynamical models. We present a novel approach for efficiently calculating the required geometric quantities by tracking steady states across the Hamiltonian trajectories using a Newton-Raphson method and employing local sensitivity information. Using our approach, we compare both Euclidean and Riemannian versions of Hamiltonian Monte Carlo on three models for intracellular processes with real data and demonstrate at least an order of magnitude improvement in the effective sampling speed. We further demonstrate the wider applicability of our approach to other gradient based MCMC methods, such as those based on Langevin diffusions.

Conclusion

Our approach is strictly benefitial in all test cases. The Matlab sources implementing our MCMC methodology is available from https://github.com/a-kramer/ode_rmhmc webcite.

【 授权许可】

   
2014 Kramer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117014137574.pdf 597KB PDF download
Figure 4. 21KB Image download
Figure 3. 22KB Image download
Figure 2. 16KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Girolami M, Calderhead B: Riemann manifold langevin and hamiltonian monte carlo methods. J R Stat Soc: Series B (Stat Methodol) 2011, 73(2):123-214. doi:10.1111/j.1467-9868.2010.00765.x
  • [2]Wilkinson DJ: Stochastic Modelling for Systems Biology Mathematical and Computational Biology, vol. 11. London, UK: Chapman & Hall/CRC; 2006.
  • [3]Gelman A, Carlin JB, Stern HS, Rubin DB: Bayesian Data Analysis, Texts in Statistical Science. London, UK: Chapman & Hall, CRC; 2004.
  • [4]Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E: Equation of state calculations by fast computing machines. J Chem Phys 1953, 21(6):1087-1092. doi:10.1063/1.1699114
  • [5]Kaderali L, Dazert E, Zeuge U, Frese M, Bartenschlager R: Reconstructing signaling pathways from RNAi data using probabilistic Boolean threshold networks. Bioinformatics 2009, 25(17):2229-2235.
  • [6]Bois FY: GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 2009, 25(11):1453-1454. doi:10.1093/bioinformatics/btp162
  • [7]Haario H, Laine M, Mira A, Saksman E: DRAM: Efficient adaptive MCMC. In Statistics and Computing. Volume 16. Switzerland: Springer; 2006:339-354.
  • [8]Brooks S, Gelman A, Jones G. L, Meng X-L (Eds): Handbook of Markov Chain Monte Carlo. Handbooks of Modern Statistical Methods. London, UK: Chapman & Hall/CRC; 2011.
  • [9]Lawrence N. D, Girolami M, Rattray M, Sanguinetti G (Eds): Learning and Inference in Computational Systems Biology. Computational Molecular Biology. Cambridge, Massachusetts, London, England: The MIT Press; 2010.
  • [10]Rannala B: Identifiability of parameters in MCMC Bayesian inference of phylogeny. Syst Biol 2002, 51(5):754-760.
  • [11]Duane S, Kennedy AD, Pendleton BJ, Roweth D: Hybrid Monte Carlo. Phys Lett B 1987, 195(2):216-222. doi:10.1016/0370-2693(87)91197-X
  • [12]Radde N: The role of feedback mechanisms in biological network models - a tutorial. Asian J Control 2011, 13(5):597-610.
  • [13]Calderhead B, Sustik M: Sparse approximate manifolds for differential geometric mcmc. Adv Neural Inf Process Syst 2012, 26:2888-2896.
  • [14]Rao CR: Information and accuracy attainable in the estimation of statistical parameters. Bull Calc Math Soc 1945., 1(37)
  • [15]Calderhead B: Differential geometric mcmc methods and applications. PhD thesis. University of Glasgow 2011.
  • [16]Brooks S, Gelman A, Jones GL, Meng X-L (Eds): Handbook of Markov Chain Monte Carlo Handbooks of Modern Statistical Methods, Chap. 5. London, UK: Chapman & Hall/CRC; 2011.
  • [17]Weckesser W: Vfgen: A code generation tool. JNAIAM 2008, 3(1-2):151-165.
  • [18]Wolff U: Monte Carlo errors with less errors. Comput Phys Commun 2004, 156(2):143-153. doi:10.1016/S0010-4655(03)00467-3
  • [19]Schmidt H, Jirstrand M: Systems biology toolbox for matlab: a computational platform for research in systems biology. Bioinformatics 2006, 22(4):514-515. doi:10.1093/bioinformatics/bti799. [http://bioinformatics.oxfordjournals.org/content/22/4/514.full.pdf+html webcite]
  • [20]Fritsche-Guenther R, Witzel F, Sieber A, Herr R, Schmidt N, Braun S, Brummer T, Sers C, Blüthgen N: Strong negative feedback from Erk to Raf confers robustness to mapk signalling. Mol Syst Biol 2011, 7(489):1-13.
  • [21]Brännmark C, Palmer R, Glad ST, Cedersund G, Stralfors P: Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. J Biol C 2010, 285(26):20171-9. doi:10.1074/jbc.M110.106849. [http://www.jbc.org/content/early/2010/04/26/jbc.M110.106849.full.pdf+html webcite]
  文献评价指标  
  下载次数:45次 浏览次数:9次