| BMC Bioinformatics | |
| eXamine: Exploring annotated modules in networks | |
| Kasper Dinkla2  Mohammed El-Kebir1  Cristina-Iulia Bucur1  Marco Siderius1  Martine J Smit1  Michel A Westenberg2  Gunnar W Klau1  | |
| [1] VU University Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands | |
| [2] Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands | |
| 关键词: Cytoscape; Visualization; Set-based annotation; Module; Network analysis; | |
| Others : 818289 DOI : 10.1186/1471-2105-15-201 |
|
| received in 2014-04-23, accepted in 2014-06-10, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Biological networks have a growing importance for the interpretation of high-throughput “omics” data. Integrative network analysis makes use of statistical and combinatorial methods to extract smaller subnetwork modules, and performs enrichment analysis to annotate the modules with ontology terms or other available knowledge. This process results in an annotated module, which retains the original network structure and includes enrichment information as a set system. A major bottleneck is a lack of tools that allow exploring both network structure of extracted modules and its annotations.
Results
This paper presents a visual analysis approach that targets small modules with many set-based annotations, and which displays the annotations as contours on top of a node-link diagram. We introduce an extension of self-organizing maps to lay out nodes, links, and contours in a unified way. An implementation of this approach is freely available as the Cytoscape app eXamine
Conclusions
eXamine accurately conveys small and annotated modules consisting of several dozens of proteins and annotations. We demonstrate that eXamine facilitates the interpretation of integrative network analysis results in a guided case study. This study has resulted in a novel biological insight regarding the virally-encoded G-protein coupled receptor US28.
【 授权许可】
2014 Dinkla et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140711092622232.pdf | 2317KB | ||
| Figure 10. | 40KB | Image | |
| Figure 9. | 88KB | Image | |
| Figure 2. | 103KB | Image | |
| Figure 7. | 47KB | Image | |
| Figure 6. | 21KB | Image | |
| Figure 5. | 84KB | Image | |
| Figure 4. | 21KB | Image | |
| Figure 3. | 25KB | Image | |
| Figure 2. | 54KB | Image | |
| Figure 1. | 29KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 2.
Figure 9.
Figure 10.
【 参考文献 】
- [1]Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403(6769):503-511.
- [2]Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA: Molecular classification of cancer class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
- [3]van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347(25):1999-2009.
- [4]Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim CJ, Kusanovic JP, Romero R, Kim Js: A novel signaling pathway impact analysis. Bioinformatics 2009, 25:75-82.
- [5]Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 2010, 26(12):i237-i245.
- [6]Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002, 18(Suppl 1):S233-S240.
- [7]Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 2008, 24(13):i223-i231.
- [8]Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
- [9]Mitra K, Carvunis AR, Ramesh SK, Ideker T: Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 2013, 14(10):719-732.
- [10]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
- [11]Battista G, Eades P, Tamassia R, Tollis I: Graph drawing: algorithms for the visualization of graphs. Upper Saddle River, NJ, USA: Prentice Hall PTR; 1998.
- [12]Herman I, Melançon G, Marshall MS: Graph visualization and navigation in information visualization: A survey. IEEE Trans Vis Comput Graph 2000, 6:24-43.
- [13]von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk J, Fekete JD, Fellner D: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput Graph Forum 2011, 30(6):1719-1749.
- [14]Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC: Visualization of omics data for systems biology. Nat Methods 2010, 7(3s):S56-S68.
- [15]Smooth ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27(3):431-432.
- [16]van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C: Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 2008, 9:399. BioMed Central Full Text
- [17]Venn and Euler diagrams http://apps.cytoscape.org/apps/vennandeulerdiagrams webcite.
- [18]RBVI Cytoscape Plugins – Cytoscape group support http://www.rbvi.ucsf.edu/cytoscape/groups webcite.
- [19]Bertault F, Eades P: Drawing Hypergraphs in the subset standard. In Proceedings of the 8th International Symposium on Graph Drawing, Volume 1984 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2001:164-169.
- [20]Simonetto P, Auber D, Archambault D: Fully automatic visualisation of overlapping sets. Comput Graph Forum 2009, 28(3):967-974.
- [21]Riche N, Dwyer T: Untangling Euler diagrams. IEEE Trans Vis Comput Graph 2010, 16(6):1090-1099.
- [22]Alper B, Riche N, Ramos G, Czerwinski M: Design Study of LineSets, a Novel Set Visualization Technique. IEEE Trans Vis Comput Graph 2011, 17(12):2259-2267.
- [23]Dinkla K, van Kreveld M, Speckmann B, Westenberg M: Kelp Diagrams Point Set Membership Visualization. Comput Graph Forum 2012, 31(3):875-884.
- [24]Collins C, Penn G, Carpendale S: Bubble Sets: revealing set relations with Isocontours over existing visualizations. IEEE Trans Vis Comput Graph 2009, 15(6):1009-1016.
- [25]Smith AM, Xu W, Sun Y, Faeder JR, Marai GE: RuleBender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinformatics 2012, 13(Suppl 8):S3. BioMed Central Full Text
- [26]Meulemans W, Riche NH, Speckmann B, Alper B, Dwyer T: KelpFusion: A Hybrid Set Visualization Technique. IEEE Trans Vis Comput Graph 2013, 19(11):1846-1858.
- [27]Sugiyama K, Misue K: Visualization of structural information: automatic drawing of compound digraphs. IEEE Trans Syst Man Cybernet 1991, 21(4):876-892.
- [28]Shneiderman B, Aris A: Network visualization by semantic substrates. IEEE Trans Vis Comput Graph 2006, 12(5):733-740.
- [29]Barsky A, Munzner T, Gardy J, Kincaid R: Cerebral: visualizing multiple experimental conditions on a graph with biological context. IEEE Trans Vis Comput Graph 2008, 14(6):1253-1260.
- [30]Dwyer T, Marriott K, Schreiber F, Stuckey P, Woodward M, Wybrow M: Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Trans Vis Comput Graph 2008, 14(6):1293-1300.
- [31]Gansner ER, Hu Y, Kobourov S: GMap: Visualizing graphs and clusters as maps. In Pacific Visualization Symposium (PacificVis). IEEE; 2010:201-208.
- [32]Fruchterman T, Reingold E: Graph drawing by force-directed placement. Softw: Practice Exper 1991, 21(11):1129-1164.
- [33]Dwyer T, Marriott K, Stuckey P: Fast node overlap removal. In Graph Drawing, Volume 3843 of Lecture Notes in Computer Science. Berlin, Germany: Springer Berlin Heidelberg; 2006:153-164.
- [34]Kohonen T: The self-organizing map. Proc IEEE 1990, 78(9):1464-1480.
- [35]Vesanto J: SOM-based data visualization methods. Intell Data Anal 1999, 3(2):111-126.
- [36]MacCallum R, Redmond S, Christophides G: An expression map for Anopheles gambiae. BMC Genomics 2011, 12:620. BioMed Central Full Text
- [37]Frishman Y, Tal A: Online dynamic graph drawing. IEEE Trans Vis Comput Graph 2008, 14(4):727-740.
- [38]de Berg M, Cheong O, van Kreveld M, Overmars M: Computational Geometry: Algorithms and Applications. Berlin, Heidelberg: Springer; 2008.
- [39]Vivid Solutions: Java topology suite. http://www.vividsolutions.com/jts webcite 2003
- [40]Harrower M, Brewer C: ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps. Chichester, UK: John Wiley & Sons, Ltd; 2011.
- [41]Gandhi MK, Khanna R: Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis 2004, 4(12):725-738.
- [42]Söderberg-Nauclér C: Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 2006, 259(3):219-246.
- [43]Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ: Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 2002, 62(12):3347-3350.
- [44]Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS: Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 2002, 360(9345):1557-1563.
- [45]JU V, H WD, Cinatl JJ: Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev 2004, 28:59-77.
- [46]Randolph-Habecker J, Rahill B, Torok-Storb B, Vieira J, Kolattukudy PE, Rovin BH, Sedmak DD: The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 2002, 19:37-46.
- [47]Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ: Constitutive signaling of the human cytomegalovirus-encoded Chemokine receptor US28. J Biol Chem 2001, 276(2):1133-1137.
- [48]Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GAMS, Smit MJ: Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Nat Acad Sci 2006, 103(35):13068-13073.
- [49]Maussang D, Langemeijer E, Fitzsimons CP, Stigter-van Walsum M, Dijkman R, Borg MK, Slinger E, Schreiber A, Michel D, Tensen CP, van Dongen GA, Leurs R, Smit MJ: The human cytomegalovirus-encoded Chemokine receptor US28 promotes angiogenesis and tumor formation via Cyclooxygenase-2. Cancer Res 2009, 69(7):2861-2869.
- [50]Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Soderberg-Naucler C, Smit MJ: HCMV-Encoded Chemokine Receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 2010, 3(133):ra58.
- [51]Langemeijer EV, Slinger E, de Munnik S, Schreiber A, Maussang D, Vischer H, Verkaar F, Leurs R, Siderius M, Smit MJ: Constitutiveβ-Catenin signaling by the viral Chemokine receptor US28. PLoS ONE 2012, 7(11):e48935.
- [52]Gautier L, Cope L, Bolstad BM, Irizarry RA: affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20(3):307-315.
- [53]Smyth G: limma: linear models for microarray data. In Bioinformatics And Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health. Edited by Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. New York, NY, USA: Springer New York; 2005:397-420.
- [54]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22(13):1600-1607.
- [55]Minisini R, Tulone C, Lüske A, Michel D, Mertens T, Gierschik P, Moepps B: Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 2003, 77(8):4489-4501.
- [56]Zhurinsky J, Shtutman M, Ben-Ze’ev A: Differential mechanisms of LEF/TCF family-dependent transcriptional activation byβ-Catenin and Plakoglobin. Mol Cell Biol 2000, 20(12):4238-4252.
- [57]Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA: The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 1999, 99(5):511-520.
- [58]Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA: Human Cytomegalovirus Chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 2003, 278(50):50456-50465.
- [59]Herynk MH, Tsan R, Radinsky R, Gallick GE: Activation of c-Met in colorectal carcinoma cells leads to constitutive association of tyrosine-phosphorylatedβ-catenin. Clin & Exp Metastasis 2003, 20(4):291-300.
- [60]Purcell R, Childs M, Maibach R, Miles C, Turner C, Zimmermann A, Sullivan M: HGF/c-Met related activation of beta-catenin in hepatoblastoma. J Exp & Clin Cancer Res 2011, 30:96. BioMed Central Full Text
PDF