| BMC Cancer | |
| Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells | |
| Jennifer Munkley1  Nicholas P Lafferty1  Gabriela Kalna2  Craig N Robson4  Hing Y Leung3  Prabhakar Rajan3  David J Elliott1  | |
| [1] Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK | |
| [2] Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK | |
| [3] Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK | |
| [4] Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK | |
| 关键词: Prostate cancer; Androgens; MAP Kinase; RAS/ERK1/2; PTPRR; | |
| Others : 1106751 DOI : 10.1186/s12885-015-1012-8 |
|
| received in 2014-05-27, accepted in 2015-01-06, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Androgens drive the onset and progression of prostate cancer (PCa) via androgen receptor (AR) signalling. The principal treatment for PCa is androgen deprivation therapy, although the majority of patients eventually develop a lethal castrate-resistant form of the disease, where despite low serum testosterone levels AR signalling persists. Advanced PCa often has hyper-activated RAS/ERK1/2 signalling thought to be due to loss of function of key negative regulators of the pathway, the details of which are not fully understood.
Methods
We recently carried out a genome-wide study and identified a subset of 226 novel androgen-regulated genes (PLOS ONE 6:e29088, 2011). In this study we have meta-analysed this dataset with genes and pathways frequently mutated in PCa to identify androgen-responsive regulators of the RAS/ERK1/2 pathway.
Results
We find the PTGER4 and TSPYL2 genes are up-regulated by androgen stimulation and the ADCY1, OPKR1, TRIB1, SPRY1 and PTPRR are down-regulated by androgens. Further characterisation of PTPRR protein in LNCaP cells revealed it is an early and direct target of the androgen receptor which negatively regulates the RAS/ERK1/2 pathway and reduces cell proliferation in response to androgens.
Conclusion
Our data suggest that loss of PTPRR in clinical PCa is one factor that might contribute to activation of the RAS/ERK1/2 pathway.
【 授权许可】
2015 Munkley et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150202012035968.pdf | 1580KB | ||
| Figure 4. | 68KB | Image | |
| Figure 3. | 63KB | Image | |
| Figure 2. | 70KB | Image | |
| Figure 1. | 67KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al.: International variation in prostate cancer incidence and mortality rates. Eur Urol 2012, 61:1079-1092.
- [2]Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al.: The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011, 30:2719-2733.
- [3]Karantanos T, Corn PG, Thompson TC: Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013, 32:5501-5511.
- [4]Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al.: The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 2013, 23:35-47.
- [5]Mills IG: Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat Rev Cancer 2014, 14:187-198.
- [6]Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al.: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011, 19:575-586.
- [7]Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, et al.: Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci U S A 1998, 95:5246-5250.
- [8]Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 1998, 95:15587-15591.
- [9]Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al.: Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003, 4:209-221.
- [10]Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ: Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 1999, 59:279-284.
- [11]Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al.: Integrative genomic profiling of human prostate cancer. Cancer Cell 2010, 18:11-22.
- [12]Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, et al.: Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 2012, 72:1878-1889.
- [13]Schutzman JL, Martin GR: Sprouty genes function in suppression of prostate tumorigenesis. Proc Natl Acad Sci U S A 2012, 109:20023-20028.
- [14]Rajan P, Dalgliesh C, Carling PJ, Buist T, Zhang C, Grellscheid SN, et al.: Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome. PLoS One 2011, 6:e29088.
- [15]Munkley J, Rajan P, Lafferty N, Dalgliesh C, Jackson R, Robson C, et al.: A novel androgen-regulated isoform of the TSC2 tumour suppressor gene increases cell proliferation. Oncotarget 2014, 5:131-9.
- [16]Frigo DE, Sherk AB, Wittmann BM, Norris JD, Wang Q, Joseph JD, et al.: Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 2009, 23:1385-1396.
- [17]Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR: Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984, 44:3522-3529.
- [18]Hayward SW, Dahiya R, Cunha GR, Bartek J, Deshpande N, Narayan P: Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol Anim 1995, 31:14-24.
- [19]Halkidou K, Gnanapragasam VJ, Mehta PB, Logan IR, Brady ME, Cook S, et al.: Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 2003, 22:2466-2477.
- [20]Rigas AC, Robson CN, Curtin NJ: Therapeutic potential of CDK inhibitor NU2058 in androgen-independent prostate cancer. Oncogene 2007, 26:7611-7619.
- [21]Su PH, Lin YW, Huang RL, Liao YP, Lee HY, Wang HC, et al.: Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene 2013, 32:15-26.
- [22]Patel R, Gao M, Ahmad I, Fleming J, Singh LB, Rai TS, et al.: Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. J Clin Invest 2013, 123:1157-1175.
- [23]Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 2001, 98:15149-15154.
- [24]Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33:49-54.
- [25]Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, et al.: Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 2001, 61:7388-7393.
- [26][http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109] webcite International Genomics Consortium Expression Project for Oncology (expO) - All samples [; https://expo.intgen.org/expo/public/ webcite]
- [27]Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, et al.: Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res 2008, 68:927-936.
- [28]Vanaja DK, Cheville JC, Iturria SJ, Young CY: Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 2003, 63:3877-3882.
- [29]Rodriguez-Berriguete G, Fraile B, Martinez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M: MAP Kinases and Prostate Cancer. J Signal Transduct 2012, 2012:169170.
- [30]Hanafusa H, Torii S, Yasunaga T, Nishida E: Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002, 4:850-858.
- [31]Fritzsche S, Kenzelmann M, Hoffmann MJ, Muller M, Engers R, Grone HJ, et al.: Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma. Endocr Relat Cancer 2006, 13:839-849.
- [32]McKie AB, Douglas DA, Olijslagers S, Graham J, Omar MM, Heer R, et al.: Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene 2005, 24:2166-2174.
- [33]Augustine KA, Silbiger SM, Bucay N, Ulias L, Boynton A, Trebasky LD, et al.: Protein tyrosine phosphatase (PC12, Br7, Sl) family: Expression characterization in the adult human and mouse. Anat Rec 2000, 258:221-234.
- [34]Chirivi RG, Dilaver G, van de Vorstenbosch R, Wanschers B, Schepens J, Croes H, et al.: Characterization of multiple transcripts and isoforms derived from the mouse protein tyrosine phosphatase gene Ptprr. Genes Cells 2004, 9:919-933.
- [35]Van Den Maagdenberg AM, Bachner D, Schepens JT, Peters W, Fransen JA, Wieringa B, et al.: The mouse Ptprr gene encodes two protein tyrosine phosphatases, PTP-SL and PTPBR7, that display distinct patterns of expression during neural development. Eur J Neurosci 1999, 11:3832-3844.
- [36]Chirivi RG, Noordman YE, Van der Zee CE, Hendriks WJ: Altered MAP kinase phosphorylation and impaired motor coordination in PTPRR deficient mice. J Neurochem 2007, 101:829-840.
- [37]Blanco-Aparicio C, Torres J, Pulido R: A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol 1999, 147:1129-1136.
- [38]Pulido R, Zuniga A, Ullrich A: PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J 1998, 17:7337-7350.
- [39]Menigatti M, Cattaneo E, Sabates-Bellver J, Ilinsky VV, Went P, Buffoli F, et al.: The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. Mol Cancer 2009, 8:124. BioMed Central Full Text
- [40]Chang CC, Huang RL, Wang HC, Liao YP, Yu MH, Lai HC: High methylation rate of LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582 genes in cervical adenocarcinoma. Int J Gynecol Cancer 2014, 24:201-209.
- [41]Dus-Szachniewicz K, Wozniak M, Nelke K, Gamian E, Gerber H, Ziolkowski P. Protein tyrosine phosphatase receptor R and Z1 expression are independent prognostic indicators in oral squamous cell carcinoma. Head Neck.2014; 10:1002/hed.23835.
PDF