期刊论文详细信息
Biotechnology for Biofuels
Novel enzymes for the degradation of cellulose
Vincent GH Eijsink1  Bjørge Westereng1  Gustav Vaaje-Kolstad1  Svein Jarle Horn1 
[1]Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
关键词: Aldonic acid;    Bioeconomy;    Biorefinery;    Lytic polysaccharide monooxygenase;    Bioethanol;    Biofuel;    CBM33;    GH61;    Cellulose;    Cellulase;   
Others  :  798271
DOI  :  10.1186/1754-6834-5-45
 received in 2012-05-16, accepted in 2012-06-18,  发布年份 2012
PDF
【 摘 要 】

The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

【 授权许可】

   
2012 Horn et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706113914232.pdf 2842KB PDF download
Figure 7 . 36KB Image download
Figure 6 . 65KB Image download
Figure 5 . 76KB Image download
Figure 4 . 34KB Image download
Figure 3 . 17KB Image download
Figure 2 . 41KB Image download
Figure 1 . 37KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6 .

Figure 7 .

【 参考文献 】
  • [1]IPCC: Special report on renewable energy sources and climate change Mitigation (SRREN). Cambridge University Press, Cambridge; 2011.
  • [2]Walker GM: 125th anniversary review: fuel alcohol: current production and future challenges. J Inst Brew 2011, 117:3-22.
  • [3]Hamelinck CN, Faaij APC: Production of advanced biofuels. Int Sugar J 2006, 108:168-175.
  • [4]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109:1083-1087.
  • [5]Chundawat SPS, Beckham GT, Himmel ME, Dale BE: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2011, 2:121-145.
  • [6]Merino S, Cherry J: Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 2007, 108:95-120.
  • [7]Reese ET: Enzymatic hydrolysis of cellulose. Appl Microbiol 1956, 4:39-45.
  • [8]Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sørlie M, Eijsink VGH: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330:219-222.
  • [9]Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VGH: Cleavage of cellulose by a CBM33 protein. Prot Science 2011, 20:1479-1483.
  • [10]Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G, Eijsink VGH: Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high resolution structure of its oxidative CBM33 enzyme. J Mol Biol 2012, 416:239-254.
  • [11]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37:233-238.
  • [12]Harris PV, Welner D, McFarland KC, Re E, Poulsen JCN, Brown K, Salbo R, Ding HS, Vlasenko E, Merino S, et al.: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 2010, 49:3305-3316.
  • [13]Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, Krogh K, Jorgensen CI, Tovborg M, Anthonsen A, et al.: Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 2011, 108:15079-15084.
  • [14]Beeson WT, Phillips CM, Cate JHD, Marletta MA: Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 2012, 134:890-892.
  • [15]Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD: Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 2011, 77:7007-7015.
  • [16]Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 2011, 6:1399-1406.
  • [17]Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M: The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 2011, 6:e27807.
  • [18]Li X, Beeson WT, Phillips CM, Marletta MA, Cate JHD: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 2012, 20:1051-1061.
  • [19]Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J: Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 2007, 108:67-93.
  • [20]Pauly M, Keegstra K: Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 2008, 54:559-568.
  • [21]Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S: Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 2011, 115:14191-14202.
  • [22]Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, et al.: Toward a systems approach to understanding plant cell walls. Science 2004, 306:2206-2211.
  • [23]Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC: Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 2011, 108:E1195-E1203.
  • [24]Endler A, Persson S: Cellulose synthases and synthesis in arabidopsis. Mol Plant 2011, 4:199-211.
  • [25]Mittal A, Katahira R, Himmel ME, Johnson DK: Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 2011, 4:41.
  • [26]Beckham GT, Matthews JF, Peters B, Bomble YJ, Himmel ME, Crowley MF: Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs. J Phys Chem B 2011, 115:4118-4127.
  • [27]Liu YS, Baker JO, Zeng YN, Himmel ME, Haas T, Ding SY: Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 2011, 286:11195-11201.
  • [28]Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol 2010, 61:263-289.
  • [29]Biely P, Mastihubova M, Tenkanen M, Eyzaguirre J, Li XL, Vrsanska M: Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of beta-D-xylopyranose and alpha-L-arabinofuranose. J Biotechnol 2011, 151:137-142.
  • [30]Bunzel M: Chemistry and occurrence of hydroxycinnamate oligomers. Phytochem Rev 2010, 9:47-64.
  • [31]Gilbert HJ, Stalbrand H, Brumer H: How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 2008, 11:338-348.
  • [32]Agger J, Vikso-Nielsen A, Meyer AS: Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. J Agric Food Chem 2010, 58:6141-6148.
  • [33]Varnai A, Huikko L, Pere J, Siika-aho M, Viikari L: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 2011, 102:9096-9104.
  • [34]Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25:759-761.
  • [35]Zoia L, Orlandi M, Argyropoulos DS: Microwave-assisted lignin isolation using the enzymatic mild acidolysis (EMAL) protocol. J Agric Food Chem 2008, 56:10115-10122.
  • [36]Takahashi N, Koshijima T: Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol 1988, 22:231-241.
  • [37]Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC: Biodegradation of lignocellulosics: microbial chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005, 8:195-204.
  • [38]Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds — from one strategy to four. Nat Rev Microbiol 2011, 9:803-816.
  • [39]Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VGH: Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A 2006, 103:18089-18094.
  • [40]Payne CM, Bomble YJ, Taylor CB, McCabe C, Himmel ME, Crowley MF, Beckham GT: Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J Biol Chem 2011, 286:41028-41035.
  • [41]Horn SJ, Sørlie M, Vårum KM, Väljamäe P, Eijsink VGH: Measuring processivity. Methods Enzymol 2012, 510:69-96.
  • [42]Wood TM, McCrae SI: Synergism between enzymes involved in the solubilization of native cellulose. Adv Chem Ser 1979, 181:181-209.
  • [43]Kostylev M, Wilson DB: Synergistic interactions in cellulose hydrolysis. Biofuels 2012, 3:61-70.
  • [44]Carrard G, Koivula A, Soderlund H, Beguin P: Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 2000, 97:10342-10347.
  • [45]Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT: The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci U S A 2003, 100:484-489.
  • [46]Linder M, Teeri TT: The roles and function of cellulose-binding domains. J Biotechnol 1997, 57:15-28.
  • [47]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
  • [48]Davies G, Henrissat B: Structures and mechanisms of glycosyl hydrolases. Structure 1995, 3:853-859.
  • [49]Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 2007, 23:1270-1276.
  • [50]Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ: Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 2008, 26:228-235.
  • [51]Reese ET, Siu RGH, Levinson HS: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 1950, 59:485-497.
  • [52]Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH: The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 2005, 280:28492-28497.
  • [53]Moser F, Irwin D, Chen SL, Wilson DB: Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 2008, 100:1066-1077.
  • [54]Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M: The first structure of a glycoside hydrolase family 61 Member, Cel61B from Hypocrea jecorina, at 1.6 angstrom resolution. J Mol Biol 2008, 383:144-154.
  • [55]Cannella D, Hsieh C-w, Felby C, Jorgensen H: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 2012, 5:26.
  • [56]Igarashi K, Samejima M, Eriksson KEL: Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. Eur J Biochem 1998, 253:101-106.
  • [57]Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X: A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 2012, 7:e31693.
  • [58]Langston JA, Brown K, Xu F, Borch K, Garner A, Sweeney MD: Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions. Biochim Biophys Acta 2012, 1824:802-812.
  • [59]Mason MG, Nicholls P, Divne C, Hallberg BM, Henriksson G, Wilson MT: The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim Biophys Acta-Bioenerg 2003, 1604:47-54.
  • [60]Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D: Cellobiose dehydrogenase - A flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 2006, 7:255-280.
  • [61]Felby C, Nielsen BR, Olesen PO, Skibsted LH: Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Appl Microbiol Biotechnol 1997, 48:459-464.
  • [62]Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991, 280:309-316.
  • [63]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
  • [64]Hori C, Igarashi K, Katayama A, Samejima M: Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 2011, 321:14-23.
  • [65]Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP: Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 2010, 107:15293-15298.
  • [66]Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS: Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun 2008, 76:4968-4977.
  • [67]Sanchez B, Gonzalez-Tejedo C, Ruas-Madiedo P, Urdaci MC, Margolles A: Lactobacillus plantarum extracellular chitin-binding protein and its role in the interaction between chitin, caco-2 cells, and mucin. Appl Environ Microbiol 2011, 77:1123-1126.
  • [68]Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H: The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 2010, 34:171-198.
  • [69]Vebo HC, Snipen L, Nes IF, Brede DA: The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS One 2009, 4:e7660.
  • [70]Hukuhara T, Hayakawa T, Wijonarko A: Increased baculovirus susceptibility of armyworm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene. Nat Biotechnol 1999, 17:1122-1124.
  • [71]Mitsuhashi W, Miyamoto K: Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol 2003, 82:34-40.
  • [72]Vaaje-Kolstad G, Houston DR, Riemen AHK, Eijsink VGH, van Aalten DMF: Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 2005, 280:11313-11319.
  • [73]Chundawat SPS, Bellesia G, Uppugundla N, Sousa LD, Gao DH, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, et al.: Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 2011, 133:11163-11174.
  • [74]Arantes V, Saddler JN: Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 2011, 4:3.
  • [75]Langan P, Gnanakaran S, Rector KD, Pawley N, Fox DT, Cho DW, Hammel KE: Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 2011, 4:3820-3833.
  • [76]Payne CM, Himmel ME, Crowley MF, Beckham GT: Decrystallization of oligosaccharides from the cellulose I beta surface with molecular simulation. J Phys Chem Lett 2011, 2:1546-1550.
  • [77]Adav SS, Ravindran A, Sze SK: Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J Proteomics 2012, 75:1493-1504.
  • [78]Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, et al.: The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 2011, 333:762-765.
  • [79]Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, et al.: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278:31988-31997.
  • [80]MacDonald J, Doering M, Canam T, Gong YC, Guttman DS, Campbell MM, Master ER: Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol 2011, 77:3211-3218.
  • [81]Wymelenberg AV, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, et al.: Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 2010, 76:3599-3610.
  • [82]Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG: A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 2010, 285:37598-37606.
  • [83]Vaaje-Kolstad G, Farkaš V, Hrmova M, Fincher GB: Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites. Biochim Biophys Acta 1800, 2010:674-684.
  • [84]Uhlin KI, Atalla RH, Thompson NS: Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 1995, 2:129-144.
  • [85]Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ: Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 1998, 307:299-309.
  • [86]Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR: The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 2009, 113:10994-11002.
  • [87]Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 2002, 269:4202-4211.
  • [88]Jager G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess A, Buchs J: How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels 2011, 4:33.
  • [89]Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M, Cosgrove DJ: Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A 1995, 92:9245-9249.
  • [90]Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng JF, Hugenholtz P, McSweeney CS, Morrison M: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 2010, 107:14793-14798.
  • [91]Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, et al.: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331:463-467.
  • [92]Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH: Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 2012, 7:e38571.
  • [93]Fairley P: Introduction: Next generation biofuels. Nature 2011, 474:S2-S5.
  文献评价指标  
  下载次数:39次 浏览次数:11次