期刊论文详细信息
Biotechnology for Biofuels
Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates
Jules B. van Lier3  Marcel H. Zandvoort1  Merle de Kreuk3  Yu Tao2  Dara S. M. Ghasimi3 
[1]Waternet, Korte Ouderkerkerdijk 7, Amsterdam, 1090 GJ, The Netherlands
[2]Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, the UK
[3]Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands
关键词: Microbial community;    Adaptation;    Volatile fatty acids (VFAs);    Cellulose;    Fine sieved fraction (FSF);    Anaerobic digestion;   
Others  :  1229677
DOI  :  10.1186/s13068-015-0355-3
 received in 2015-06-22, accepted in 2015-10-09,  发布年份 2015
【 摘 要 】

Background

In this research, the feasibility of, and population dynamics in, one-step anaerobic sequencing batch reactor systems treating the fine sieved fraction (FSF) from raw municipal wastewater was studied under thermophilic (55 °C) and mesophilic (35 °C) conditions. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter (mesh size 350 micron). FSF is a heterogeneous substrate that mainly consists of fibres originating from toilet paper and thus contains a high cellulosic fraction (60–80 % of total solids content), regarded as an energy-rich material.

Results

Results of the 656-day fed-batch operation clearly showed that thermophilic digestion was more stable, applying high organic loading rates (OLR) up to 22 kg COD/(m 3  day). In contrast, the mesophilic digester already failed applying an OLR of 5.5 kg COD/(m 3  day), indicated by a drop in pH and increase in volatile fatty acids (VFAs). The observed viscosity values of the mesophilic sludge were more than tenfold higher than the thermophilic sludge. 454-pyrosequencing of eight mesophilic and eight thermophilic biomass samples revealed that Bacteroides and aceticlastic methanogen Methanosaeta were the dominant genera in the mesophilic digester, whereas OP9 lineages, Clostridium and the hydrogenotrophic methanogen Methanothermobacter dominated the thermophilic one.

Conclusions

Our study suggests that applying thermophilic conditions for FSF digestion would result in a higher biogas production rate and/or a smaller required reactor volume, comparing to mesophilic conditions.

【 授权许可】

   
2015 Ghasimi et al.

附件列表
Files Size Format View
Fig.8. 65KB Image download
Fig.7. 49KB Image download
Fig.6. 83KB Image download
Fig.5. 49KB Image download
Fig.4. 41KB Image download
Fig.3. 40KB Image download
Fig.2. 92KB Image download
Fig.1. 103KB Image download
Fig.8. 65KB Image download
Fig.7. 49KB Image download
Fig.6. 83KB Image download
Fig.5. 49KB Image download
Fig.4. 41KB Image download
Fig.3. 40KB Image download
Fig.2. 92KB Image download
Fig.1. 103KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]STOWA 2010–19. Influent Fijnzeven in RWZI’s. 2010. http://www.stowa.nl (ISBN 978.90.5773.477.9).
  • [2]Ruiken CJ, Breuer G, Klaversma E, Santiago T, van Loosdrecht MCM: Sieving wastewater—cellulose recovery, economic and energy evaluation. Water Res 2013, 47:43-48.
  • [3]Ghasimi DSM, Tao Y, de Kreuk M, Abbas B, Zandvoort MH, van Lier JB. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage. J Water Res (In Press Corrected Proof). 2015.
  • [4]Yu D, Kurola JM, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M: Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage 2014, 143:54-60.
  • [5]Labatut RA, Angenent LT, Scott NR: Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 2014, 53:249-258.
  • [6]Tezel U, Tandukar M, Hajaya MG, Pavlostathis SG: Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation. Bioresour Technol 2014, 170:385-394.
  • [7]Zábranská J, Štěpová J, Wachtl R, Jenlček P, Dohányos M: The activity of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates. Water Sci Technol 2000, 42:49-56.
  • [8]Ahring BK: Perspectives for anaerobic digestion. Adv Biochem Eng Biotechnol 2003, 81:1-30.
  • [9]McHugh S, Carton M, Collins G, O’Flaherty V: Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16-37 degrees C. FEMS Microbiol Ecol 2004, 48:369-378.
  • [10]Levén L, Eriksson ARB, Schnürer A: Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 2007, 59:683-693.
  • [11]Goberna M, Schoen MA, Sperl D, Wett B, Insam H: Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters. Biomass Bioenergy 2010, 34:340-346.
  • [12]Siddique M: Mesophilic and thermophilic biomethane production by co-digesting pretreated petrochemical wastewater with beef and dairy cattle manure. J Ind Eng Chem 2014, 20:331-337.
  • [13]De Rubia MA, Perez M, Romero LI, Sales D: Anaerobic mesophilic and thermophilic municipal sludge digestion. ChemBiochem EngQ 2002, 16:119-124.
  • [14]Dentel S: Evaluation and role of rheological properties in sludge management. Water Sci Technol 1997, 36:1-8.
  • [15]Eshtiaghi N, Markis F, Yap SD, Baudez JC, Slatter P: Rheological characterisation of municipal sludge: a review. Water Res 2013, 47:5493-5510.
  • [16]Tan H-Q, Li T-T, Zhu C, Zhang X-Q, Wu M, Zhu X-F: Parabacteroides chartae sp. nov., an obligately anaerobic species from wastewater of a paper mill. Int J Syst Evol Microbiol 2012, 62(Pt 11):2613-2617.
  • [17]Vanwonterghem I, Jensen PD, Dennis PG, Hugenholtz P, Rabaey K, Tyson GW: Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J. 2014, 8:2015-2028.
  • [18]Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Dröge S, König H: Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Microbiol Biotechnol 2014, 98:5719-5735.
  • [19]Li A, Chu YN, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S: A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 2013, 6:3. BioMed Central Full Text
  • [20]Feng L, Chen Y, Zheng X: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environ Sci Technol 2009, 43:4373-4380.
  • [21]Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, Chain PSG, Scholz MB, Lo CC, Raymond J, Quake SR, Hedlund BP: Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 2013, 4:1854.
  • [22]Zhang CL, Wang J, Dodsworth JA, Williams AJ, Zhu C, Hinrichs KU, Zheng F, Hedlund BP: In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA). Front Microbiol 2013, 4:1-12.
  • [23]Valdez-Vazquez I, Poggi-Varaldo HM: Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 2009, 13:1000-1013.
  • [24]Park J-H, Kumar G, Park J-H, Park H-D, Kim S-H: Changes in performance and bacterial communities in response to various process disturbances in a high-rate biohydrogen reactor fed with galactose. Bioresour Technol 2015, 188:109-116.
  • [25]Palatsi J, Illa J, Prenafeta-Boldú FX, Laureni M, Fernandez B, Angelidaki I, Flotats X: Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour Technol 2010, 101:2243-2251.
  • [26]Wang H, Tao Y, Temudo M, Bijl H, Kloek J, Ren N, van Lier JB, de Kreuk M: Biomethanation from enzymatically hydrolyzed brewer’s spent grain: impact of rapid increase in loadings. Bioresour Technol 2015, 190:167-174.
  • [27]Jang HM, Kim JH, Ha JH, Park JM: Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour Technol 2014, 165:174-182.
  • [28]Navas-Molina JA, Peralta-Sanchez JM, Gonzalez AM, McMurdie PJ, Vazquez-Baeza Y, Xu Z, Ursell LK, Lauber C, Zhou H, Song SJ, Huntley J, Ackermann GL, Berg-Lyons D, Holmes S, Caporaso JG, Knight R: Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 2013, 531:371-444.
  • [29]De Baere L: Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 2000, 41:283-290.
  • [30]APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington D.C.: American Public Health Association, American Water Works Association; 2005
  • [31]Angelidaki I, Sanders W: Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 2004, 3:117-129.
  • [32]Raposo F, Fernández-Cegrí V, de la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V: Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 2011, 86:1088-1098.
  • [33]Wang Y, Qian PY: Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 2009, 4:e7401.
  • [34]Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R: QIIME allows analysis of high-throughput community sequencing data. Nature Methods 2010, 7:335-336.
  • [35]Yu Y, Lee C, Kim J, Hwang S: Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005, 89:670-679.
  • [36]Wang H, Tao Y, Temudo M, Schooneveld M, Bijl H, Ren N, Wolf M, Heine C, Foerster A, Pelenc V, Kloek J, van Lier JB, de Kreuk M: An integrated approach for efficient biomethane production from solid bio-wastes in a compact system. Biotechnol Biofuels 2015, 8:1-14. BioMed Central Full Text
  • [37]Jensen PD, Ge H, Batstone DJ: Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Sci Technol 2011, 64:880-886.
  • [38]Jiménez J, Guardia-puebla Y, Cisneros-ortiz ME, Morgan-sagastume JM, Guerra G, Noyola A: Optimization of the specific methanogenic activity during the anaerobic co-digestion of pig manure and rice straw, using industrial clay residues as inorganic additive. Chem Eng J. 2015, 259:703-714.
  • [39]Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB: Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour Technol 2013, 143:512-518.
  • [40]Pagés Díaz J, Pereda Reyes I, Lundin M, Sárvári Horváth I: Co-digestion of different waste mixtures from agro-industrial activities: kinetic evaluation and synergetic effects. Bioresour Technol 2011, 102:10834-10840.
  文献评价指标  
  下载次数:61次 浏览次数:9次