期刊论文详细信息
Biotechnology for Biofuels
Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
Thorsten Subtil1  Eckhard Boles1 
[1] Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
关键词: Yeast;    Saccharomyces;    Ethanol;    Pentose;    Lignocellulose;    Fermentation;    Xylose;    Arabinose;    Glucose;    Hexokinase;   
Others  :  798343
DOI  :  10.1186/1754-6834-5-14
 received in 2011-09-21, accepted in 2012-03-16,  发布年份 2012
PDF
【 摘 要 】

Background

In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism.

Results

To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose.

Conclusion

Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization, further catabolism of D-glucose can also impede pentose utilization. Nevertheless, the results suggest that co-fermentation of pentoses in the presence of D-glucose can significantly be improved by the overexpression of pentose transporters, especially if they are not inhibited by D-glucose.

【 授权许可】

   
2012 Subtil and Boles; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706120653752.pdf 914KB PDF download
Figure 6. 24KB Image download
Figure 5. 64KB Image download
Figure 4. 58KB Image download
Figure 3. 42KB Image download
Figure 2. 35KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kötter P, Ciriacy M: Xylose Fermentation by Saccharomyces cerevisia. Appl Microbiol Biotechnol 1993, 38:776-783.
  • [2]Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K: Ethanol production from xylose by recombinant Saccharomyces cerevisia expressing protein-engineered NADH-preferring xylose reductase from Pichia stipiti. Microbiology 2007, 153:3044-3054.
  • [3]Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K: Ethanol production from xylose by recombinant Saccharomyces cerevisia expressing protein engineered NADP + -dependent xylitol dehydrogenase. J Biotechnol 2007, 130:316-319.
  • [4]Matsushika A, Sawayama S: Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisia requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 2008, 106:306-309.
  • [5]Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisia? FEMS Yeast Res 2003, 4:69-78.
  • [6]Brat D, Boles E, Wiedemann B: Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisia. Appl Environ Microbiol 2009, 75:2304-2311.
  • [7]Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A: Xylose isomerase from polycentric fungus Orpinomyce: gene sequencing, cloning, and expression in Saccharomyces cerevisia for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 2009, 82:1067-1078.
  • [8]Parachin NS, Gorwa-Grauslund MF: Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. Biotechnol Biofuels 2011, 4:9. BioMed Central Full Text
  • [9]Richard P, Putkonen M, Vaananen R, Londesborough J, Penttila M: The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. Biochemistry 2002, 41:6432-6437.
  • [10]Becker J, Boles E: A modified Saccharomyces cerevisia strain that consumes L-Arabinose and produces ethanol. Appl Environ Microbiol 2003, 69:4144-4150.
  • [11]Wiedemann B, Boles E: Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisia. Appl Environ Microbiol 2008, 74:2043-2050.
  • [12]Sedlak M, Ho NW: Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyce yeast. Yeast 2004, 21:671-684.
  • [13]Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisia strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5:399-409.
  • [14]Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E: Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
  • [15]Runquist D, Hahn-Hagerdal B, Radstrom P: Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisia. Biotechnol Biofuels 2010, 3:5. BioMed Central Full Text
  • [16]Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L: Xylose transport studies with xylose-utilizing Saccharomyces cerevisia strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 2007, 74:1041-1052.
  • [17]Hector RE, Qureshi N, Hughes SR, Cotta MA: Expression of a heterologous xylose transporter in a Saccharomyces cerevisia strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 2008, 80:675-684.
  • [18]Leandro MJ, Goncalves P, Spencer-Martins I: Two glucose/xylose transporter genes from the yeast Candida intermedi: first molecular characterization of a yeast xylose-H + symporter. Biochem J 2006, 395:543-549.
  • [19]Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A: Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisia via expression of glucose transporter Sut1. Enzyme Microb Technol 2008, 43:115-119.
  • [20]Du J, Li S, Zhao H: Discovery and characterization of novel D-xylose-specific transporters from Neurospora crass and Pichia stipiti. Mol Biosyst 2010, 6:2150-2156.
  • [21]Subtil T, Boles E: Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisia cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 2011, 4:38. BioMed Central Full Text
  • [22]Kou SC, Christensen MS, Cirillo VP: Galactose transport in Saccharomyces cerevisia. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 1970, 103:671-678.
  • [23]Goldenthal MJ, Cohen JD, Marmur J: Isolation and Characterization of a Maltose Transport Mutant in the Yeast Saccharomyces cerevisia. Curr Genet 1983, 7:195-199.
  • [24]Chow TH, Sollitti P, Marmur J: Structure of the multigene family of MAL loci in Saccharomyce. Mol Gen Genet 1989, 217:60-69.
  • [25]Bhosale SH, Rao MB, Deshpande VV: Molecular and industrial aspects of glucose isomerase. Microbiol Rev 1996, 60:280-300.
  • [26]Jansen ML, De Winde JH, Pronk JT: Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisia to excess maltose. Appl Environ Microbiol 2002, 68:4259-4265.
  • [27]Smits HP, Smits GJ, Postma PW, Walsh MC, van Dam K: High-affinity glucose uptake in Saccharomycs cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes. Yeast 1996, 12:439-447.
  • [28]Clifton D, Walsh RB, Fraenkel DG: Functional studies of yeast glucokinase. J Bacteriol 1993, 175:3289-3294.
  • [29]Gancedo JM, Clifton D, Fraenkel DG: Yeast hexokinase mutants. J Biol Chem 1977, 252:4443-4444.
  • [30]Lobo Z, Maitra PK: Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisia. Arch Biochem Biophys 1977, 182:639-645.
  • [31]Herrero P, Galindez J, Ruiz N, Martinez-Campa C, Moreno F: Transcriptional regulation of the Saccharomyces cerevisia HXK1, HXK2 and GLK1 genes. Yeast 1995, 11:137-144.
  • [32]Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH: A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 1996, 24:2519-2524.
  • [33]Holden HM, Rayment I, Thoden JB: Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 2003, 278:43885-43888.
  • [34]Reifenberger E, Boles E, Ciriacy M: Kinetic characterization of individual hexose transporters of Saccharomyces cerevisia and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 1997, 245:324-333.
  • [35]Biely P, Kratky Z, Bauer S: Metabolism of 2-deoxy-D glucose by Baker's yeast. IV. Incorporation of 2-deoxy-D-glucose into cell wall mannan. Biochim Biophys Acta 1972, 255:631-639.
  • [36]Heredia CF, Delafuente G, Sols A: Metabolic Studies with 2-Deoxyhexoses .2. Mechanisms of Inhibition of Growth + Fermentation in Bakers Yeast. Biochimica Et Biophysica Acta 1964, 86:216-223.
  • [37]Sanz P, Randez-Gil F, Prieto JA: Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast. Yeast 1994, 10:1195-1202.
  • [38]Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT: Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisia strain. FEMS Yeast Res 2005, 5:925-934.
  • [39]Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B: Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisia: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 2010, 9:16. BioMed Central Full Text
  • [40]Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria V, Kondo A: Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisia engineered for xylose utilization. Appl Microbiol Biotechnol 2009, 82:1037-1047.
  • [41]Balakrishnan R, Christie KR, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hong EL, Nash R, et al.: Fungal BLAST and Model Organism BLASTP Best Hits: new comparison resources at the Saccharomyce Genome Database (SGD). Nucleic Acids Res 2005, 33:D374-D377.
  • [42]Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature 2003, 425:737-741.
  • [43]Karhumaa K, Wu B, Kielland-Brandt MC: Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisia. J Cell Biochem 2010, 110:920-925.
  • [44]Horak J, Wolf DH: Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisia: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 1997, 179:1541-1549.
  • [45]Chiang HL, Schekman R, Hamamoto S: Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 1996, 271:9934-9941.
  • [46]DeJuan C, Lagunas R: Inactivation of the galactose transport system in Saccharomyces cerevisia. FEBS Lett 1986, 207:258-261.
  • [47]Schulte F, Wieczorke R, Hollenberg CP, Boles E: The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 2000, 182:540-542.
  • [48]Özcan S, Johnston M: Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 1999, 63:554-569.
  • [49]Pitkänen JP, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M: Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisia using continuous culture. Metab Eng 2003, 5:16-31.
  • [50]Bertilsson M, Olofsson K, Liden G: Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. Biotechnol Biofuels 2009, 2:8. BioMed Central Full Text
  • [51]Olofsson K, Palmqvist B, Liden G: Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnology for Biofuels 2010, 3:17.
  • [52]Khankal R, Chin JW, Cirino PC: Role of xylose transporters in xylitol production from engineered Escherichia col. J Biotechnol 2008, 134:246-252.
  • [53]Cirino PC, Chin JW, Ingram LO: Engineering Escherichia col for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 2006, 95:1167-1176.
  • [54]Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS: Engineered Saccharomyces cerevisia capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 2011, 108:504-509.
  • [55]Sauer U: Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 2001, 73:129-169.
  • [56]Zimmermann FK: Procedures used in the induction of mitotic recombination and mutation in the yeast Saccharomyces cerevisia. Mutat Res 1975, 31:71-86.
  • [57]Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. col by high voltage electroporation. Nucleic Acids Res 1988, 16:6127-6145.
  • [58]Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 2002, 350:87-96.
  • [59]Gietz RD, Schiestl RH: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2007, 2:1-4.
  • [60]Sambrook J, Russell DW: Molecular cloning. A laboratory manua. New York: Cold Spring Harbor; 2001.
  • [61]Krampe S, Stamm O, Hollenberg CP, Boles E: Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisia occurs in the vacuole after internalization by endocytosis. FEBS Lett 1998, 441:343-347.
  • [62]Liang H, Gaber RF: A novel signal transduction pathway in Saccharomyces cerevisia defined by Snf3-regulated expression of HXT. Mol Biol Cell 1996, 7:1953-1966.
  文献评价指标  
  下载次数:84次 浏览次数:17次