期刊论文详细信息
Biotechnology for Biofuels
Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
Dawid Brat1  Christian Weber1  Wolfram Lorenzen1  Helge B Bode1  Eckhard Boles1 
[1] Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
关键词: Butanol;    Biofuel;    Genetic engineering;    Yeast;    Ehrlich pathway;    Valine biosynthesis;    Fermentation;    Saccharomyces;    Isobutanol;   
Others  :  798231
DOI  :  10.1186/1754-6834-5-65
 received in 2012-07-16, accepted in 2012-08-30,  发布年份 2012
PDF
【 摘 要 】

Background

The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol.

Results

Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose.

Conclusion

A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.

【 授权许可】

   
2012 Brat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706111811109.pdf 1132KB PDF download
Figure 8. 21KB Image download
Figure 7. 31KB Image download
Figure 6. 18KB Image download
Figure 5. 32KB Image download
Figure 4. 30KB Image download
Figure 3. 81KB Image download
Figure 2. 83KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87:1303-1315.
  • [2]Dickinson JR, Harrison SJ, Hewlins MJ: An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 1998, 273:25751-25756.
  • [3]Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR: The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74:2259-2266.
  • [4]Ehrlich F: Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe. Berichte Deutsch Chem Gesellschaft 1907, 40:1021-1047.
  • [5]Velasco JA, Cansado J, Pena MC, Kawakami T, Laborda J, Notario V: Cloning of the dihydroxyacid dehydratase-encoding gene (ILV3) from Saccharomyces cerevisiae. Gene 1993, 137:179-185.
  • [6]Kispal G, Steiner H, Court DA, Rolinski B, Lill R: Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 1996, 271:24458-24464.
  • [7]Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
  • [8]Baez A, Cho KM, Liao JC: High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011, 90:1681-1690.
  • [9]Li S, Wen J, Jia X: Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich Pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011, 91:577-589.
  • [10]Smith KM, Cho KM, Liao JC: Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87:1045-1055.
  • [11]Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K: Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 4:21. BioMed Central Full Text
  • [12]Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A: Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 2012, 159:32-37.
  • [13]Ryan ED, Kohlhaw GB: Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol 1974, 120:631-637.
  • [14]Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J: Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res 2005, 5:757-766.
  • [15]Omura F: Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol 2008, 78:503-513.
  • [16]Falco SC, Dumas KS, Livak KJ: Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res 1985, 13:4011-4027.
  • [17]Gakh O, Cavadini P, Isaya G: Mitochondrial processing peptidases. Biochim Biophys Acta 2002, 1592:63-77.
  • [18]Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH: Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 2012, :. In press
  • [19]Dickinson JR, Salgado LE, Hewlins MJ: The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 2003, 278:8028-8034.
  • [20]Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N: Importing mitochondrial proteins: machineries and mechanisms. Cell 2009, 138:628-644.
  • [21]Mitoprot: Prediction of mitochondrial targeting sequences. http://ihg.gsf.de/ihg/mitoprot.html webcite
  • [22]Wiedemann B, Boles E: Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 2008, 74:2043-2050.
  • [23]Brat D, Boles E, Wiedemann B: Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 2009, 75:2304-2311.
  • [24]Hohmann S, Cederberg H: Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 1990, 188:615-621.
  • [25]Hohmann S: PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet 1991, 20:373-378.
  • [26]Hohmann S: Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 1991, 173:7963-7969.
  • [27]Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ: A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 1997, 272:26871-26878.
  • [28]Vuralhan Z, Morais MA, Tai SL, Piper MDW, Pronk JT: Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 2003, 69:4534-4541.
  • [29]Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT: Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 2005, 71:3276-3284.
  • [30]de la Plaza M, Fernandez De Palencia P, Pelaez C, Requena T: Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 2004, 238:367-374.
  • [31]Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC: Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 2011, 77:2905-2915.
  • [32]Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B: Kunji ER. Martinou JC: Identification and functional expression of the mitochondrial pyruvate carrier. Science; 2012.
  • [33]Park HS, Xing R, Whitman WB: Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinone coenzymes. Biochim Biophys Acta 1995, 1245:366-370.
  • [34]Gjermansen C, Nilsson-Tillgren T, Petersen JG, Kielland-Brandt MC, Sigsgaard P, Holmberg S: Towards diacetyl-less brewers' yeast. influence of ilv2 and ilv5 mutations. J Basic Microbiol 1988, 28:175-183.
  • [35]Pang SS, Duggleby RG: Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry 1999, 38:5222-5231.
  • [36]Zelenaya-Troitskaya O, Perlman PS, Butow RA: An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J 1995, 14:3268-3276.
  • [37]Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R: Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 2011, 286:41205-41216.
  • [38]Schilke B, Voisine C, Beinert H, Craig E: Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1999, 96:10206-10211.
  • [39]Lill R: Function and biogenesis of iron-sulphur proteins. Nature 2009, 460:831-838.
  • [40]Kispal G, Csere P, Prohl C, Lill R: The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 1999, 18:3981-3989.
  • [41]Mobyle portal - Institut Pasteurhttp://mobyle.pasteur.fr/cgi-bin/portal.py#forms::cai webcite
  • [42]Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM: Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 2007, 7:604-620.
  • [43]Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85:651-657.
  • [44]Flikweert MT, Van Der Zanden L, Janssen WM, Steensma HY, Van Dijken JP, Pronk JT: Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 1996, 12:247-257.
  • [45]Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC: Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18:19-32.
  • [46]Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH: Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13:345-352.
  • [47]Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH: A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 1996, 24:2519-2524.
  • [48]Carter Z, Delneri D: New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 2010, 27:765-775.
  • [49]Becker J, Boles E: A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 2003, 69:4144-4150.
  • [50]Taxis C, Knop M: System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 2006, 40:73-78.
  • [51]Zimmermann FK: Procedures used in the induction of mitotic recombination and mutation in the yeast Saccharomyces cerevisiae. Mutation Research/Environmental Mutagenesis and Related Subjects 1975, 31:71-86.
  • [52]Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 1988, 16:6127-6145.
  • [53]Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 2002, 350:87-96.
  • [54]Gietz RD, Schiestl RH: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2007, 2:1-4.
  • [55]Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E: Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 1999, 464:123-128.
  • [56]Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E: Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
  • [57]Sambrook J, Russell DW: Molecular cloning. A laboratory manual. New York: Cold Spring Harbor; 2001.
  • [58]Boles E, Zimmermann FK: Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Curr Genet 1993, 23:187-191.
  • [59]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [60]Kushnirov VV: Rapid and reliable protein extraction from yeast. Yeast 2000, 16:857-860.
  • [61]Krampitz LO: Synthesis of alpha-acetolactic acid. Arch Biochem 1948, 17:81-85.
  文献评价指标  
  下载次数:48次 浏览次数:35次